{"title":"了解Si - n- finet在交流正偏置温度不稳定应力下产生陷阱的频率依赖性","authors":"Yunfei Shi;Hao Chang;Hong Yang;Qiangzhu Zhang;Qianqian Liu;Bo Tang;Longda Zhou;Zhigang Ji;Junjie Li;Xiaobin He;Junfeng Li;Huaxiang Yin;Xiaolei Wang;Jun Luo;Wenwu Wang","doi":"10.1109/JEDS.2025.3567049","DOIUrl":null,"url":null,"abstract":"In this paper, the frequency (f) dependence of trap generation in Si n-channel fin field-effect transistors (n-FinFETs) under AC positive bias temperature instability (PBTI) stress is investigated by fast direct-current current-voltage (DCIV) method and the discharging-based multi-pulse energy profiling (DMP) technique. The experimental results show that both interface trap generation (<inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>NIT) and bulk trap generation (<inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>NOT) of n-FinFET under AC PBTI stress are almost independent of the AC frequency. However, further analysis shows that <inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>NOT consists of shallow traps near EC of Si and deep traps near Ev of Si. Moreover, about 22% of deep traps decrease with shallow traps increasing under 1.4V overdrive voltage (Vov) at 125°C with AC bias frequency increasing from 10 Hz to 1 MHz.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"450-455"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10994476","citationCount":"0","resultStr":"{\"title\":\"Understanding Frequency Dependence of Trap Generation Under AC Positive Bias Temperature Instability Stress in Si n-FinFETs\",\"authors\":\"Yunfei Shi;Hao Chang;Hong Yang;Qiangzhu Zhang;Qianqian Liu;Bo Tang;Longda Zhou;Zhigang Ji;Junjie Li;Xiaobin He;Junfeng Li;Huaxiang Yin;Xiaolei Wang;Jun Luo;Wenwu Wang\",\"doi\":\"10.1109/JEDS.2025.3567049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the frequency (f) dependence of trap generation in Si n-channel fin field-effect transistors (n-FinFETs) under AC positive bias temperature instability (PBTI) stress is investigated by fast direct-current current-voltage (DCIV) method and the discharging-based multi-pulse energy profiling (DMP) technique. The experimental results show that both interface trap generation (<inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>NIT) and bulk trap generation (<inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>NOT) of n-FinFET under AC PBTI stress are almost independent of the AC frequency. However, further analysis shows that <inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>NOT consists of shallow traps near EC of Si and deep traps near Ev of Si. Moreover, about 22% of deep traps decrease with shallow traps increasing under 1.4V overdrive voltage (Vov) at 125°C with AC bias frequency increasing from 10 Hz to 1 MHz.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"450-455\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10994476\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10994476/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10994476/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Understanding Frequency Dependence of Trap Generation Under AC Positive Bias Temperature Instability Stress in Si n-FinFETs
In this paper, the frequency (f) dependence of trap generation in Si n-channel fin field-effect transistors (n-FinFETs) under AC positive bias temperature instability (PBTI) stress is investigated by fast direct-current current-voltage (DCIV) method and the discharging-based multi-pulse energy profiling (DMP) technique. The experimental results show that both interface trap generation ($\Delta $ NIT) and bulk trap generation ($\Delta $ NOT) of n-FinFET under AC PBTI stress are almost independent of the AC frequency. However, further analysis shows that $\Delta $ NOT consists of shallow traps near EC of Si and deep traps near Ev of Si. Moreover, about 22% of deep traps decrease with shallow traps increasing under 1.4V overdrive voltage (Vov) at 125°C with AC bias frequency increasing from 10 Hz to 1 MHz.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.