Yalin Li , Zhen Sun , Yaqi Li , Hao Yang , Xiaohang Liu , Weidong He
{"title":"基于视觉变换的钢筋混凝土桥墩震害状态预测方法:数据库开发与有效评估","authors":"Yalin Li , Zhen Sun , Yaqi Li , Hao Yang , Xiaohang Liu , Weidong He","doi":"10.1016/j.ress.2025.111287","DOIUrl":null,"url":null,"abstract":"<div><div>The structural safety of bridges, particularly the ability to predict the damage states of reinforced concrete (RC) piers under seismic action, has become a critical issue in structural engineering. This study employs deep learning techniques to enable efficient prediction and assessment of damage states in-service RC bridge piers subjected to seismic events. To support model training, a parametric sample set of 100 bridge piers is generated using Latin Hypercube Sampling, leading to the development of a comprehensive seismic response database containing 66,000 samples across 15 defined damage states. These databases account for inherent seismic randomness, complex failure modes, and time-dependent composite evaluation indicators. A novel deep learning framework, CC-ViT, based on the Vision Transformer architecture, is proposed. This framework integrates Continuous Wavelet Transform, Context Anchored Attention, and DropKey techniques to enhance feature extraction and model generalization. Multiple models are trained and evaluated in a supervised learning setting. Comparative analysis reveals that CC-ViT achieved the highest test accuracy at 85 %. Grad-CAM-based interpretability analysis further confirms that CC-ViT effectively captures critical regions in the seismic response spectrum, supporting informed and explainable decision-making. To facilitate practical implementation, an end-to-end interactive software tool has been developed for efficient prediction of pier damage states. The findings contribute valuable insights for data-driven decision-making aimed at enhancing infrastructure safety and maintenance in smart cities.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"263 ","pages":"Article 111287"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vision transformer-based method for predicting seismic damage states of RC piers: Database development and efficient assessment\",\"authors\":\"Yalin Li , Zhen Sun , Yaqi Li , Hao Yang , Xiaohang Liu , Weidong He\",\"doi\":\"10.1016/j.ress.2025.111287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The structural safety of bridges, particularly the ability to predict the damage states of reinforced concrete (RC) piers under seismic action, has become a critical issue in structural engineering. This study employs deep learning techniques to enable efficient prediction and assessment of damage states in-service RC bridge piers subjected to seismic events. To support model training, a parametric sample set of 100 bridge piers is generated using Latin Hypercube Sampling, leading to the development of a comprehensive seismic response database containing 66,000 samples across 15 defined damage states. These databases account for inherent seismic randomness, complex failure modes, and time-dependent composite evaluation indicators. A novel deep learning framework, CC-ViT, based on the Vision Transformer architecture, is proposed. This framework integrates Continuous Wavelet Transform, Context Anchored Attention, and DropKey techniques to enhance feature extraction and model generalization. Multiple models are trained and evaluated in a supervised learning setting. Comparative analysis reveals that CC-ViT achieved the highest test accuracy at 85 %. Grad-CAM-based interpretability analysis further confirms that CC-ViT effectively captures critical regions in the seismic response spectrum, supporting informed and explainable decision-making. To facilitate practical implementation, an end-to-end interactive software tool has been developed for efficient prediction of pier damage states. The findings contribute valuable insights for data-driven decision-making aimed at enhancing infrastructure safety and maintenance in smart cities.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"263 \",\"pages\":\"Article 111287\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025004880\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025004880","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A vision transformer-based method for predicting seismic damage states of RC piers: Database development and efficient assessment
The structural safety of bridges, particularly the ability to predict the damage states of reinforced concrete (RC) piers under seismic action, has become a critical issue in structural engineering. This study employs deep learning techniques to enable efficient prediction and assessment of damage states in-service RC bridge piers subjected to seismic events. To support model training, a parametric sample set of 100 bridge piers is generated using Latin Hypercube Sampling, leading to the development of a comprehensive seismic response database containing 66,000 samples across 15 defined damage states. These databases account for inherent seismic randomness, complex failure modes, and time-dependent composite evaluation indicators. A novel deep learning framework, CC-ViT, based on the Vision Transformer architecture, is proposed. This framework integrates Continuous Wavelet Transform, Context Anchored Attention, and DropKey techniques to enhance feature extraction and model generalization. Multiple models are trained and evaluated in a supervised learning setting. Comparative analysis reveals that CC-ViT achieved the highest test accuracy at 85 %. Grad-CAM-based interpretability analysis further confirms that CC-ViT effectively captures critical regions in the seismic response spectrum, supporting informed and explainable decision-making. To facilitate practical implementation, an end-to-end interactive software tool has been developed for efficient prediction of pier damage states. The findings contribute valuable insights for data-driven decision-making aimed at enhancing infrastructure safety and maintenance in smart cities.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.