使用增强型YOLOv9汽车模型进行行人检测和跟踪

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Wajdi Farhat , Olfa Ben Rhaiem , Hassene Faiedh , Chokri Souani
{"title":"使用增强型YOLOv9汽车模型进行行人检测和跟踪","authors":"Wajdi Farhat ,&nbsp;Olfa Ben Rhaiem ,&nbsp;Hassene Faiedh ,&nbsp;Chokri Souani","doi":"10.1016/j.measurement.2025.118009","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian detection in autonomous driving systems is challenging due to complex urban environments, where pedestrians often blend with surrounding objects, affecting detection accuracy. To address these challenges, this paper presents a novel multi-object tracking (MOT) model combining the YOLOv9 detection algorithm with DeepSORT tracking. Key improvements include replacing the Backbone’s RepNSCPELAN4 module with a CAM context enhancement module for better feature extraction from small or occluded pedestrians, integrating the AFF channel attention mechanism to resolve semantic and scale inconsistencies, and introducing the AKConv dynamic convolution for enhanced contextual information capture in dynamic scenes. We propose evaluating a public benchmark that integrates three datasets: KITTI, EuroCity, and BDD100K. The improved YOLOv9-DeepSORT model shows strong performance across different datasets. On the KITTI Dataset, the model achieved 98.12 % precision, 92.48 % recall, a [email protected] of 95.73 %, and a [email protected]:0.95 of 90.68 %. Meanwhile, on the EuroCity Persons dataset, the results were 95.12 % precision, 90.55 % recall, a [email protected] of 94.50 %, and a [email protected]:0.95 of 79.12 %. These results highlight the model’s effectiveness in different pedestrian detection and tracking scenarios, demonstrating improved performance in both urban and challenging environments.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"254 ","pages":"Article 118009"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pedestrian detection and tracking using an enhanced YOLOv9 model for automotive vehicles\",\"authors\":\"Wajdi Farhat ,&nbsp;Olfa Ben Rhaiem ,&nbsp;Hassene Faiedh ,&nbsp;Chokri Souani\",\"doi\":\"10.1016/j.measurement.2025.118009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pedestrian detection in autonomous driving systems is challenging due to complex urban environments, where pedestrians often blend with surrounding objects, affecting detection accuracy. To address these challenges, this paper presents a novel multi-object tracking (MOT) model combining the YOLOv9 detection algorithm with DeepSORT tracking. Key improvements include replacing the Backbone’s RepNSCPELAN4 module with a CAM context enhancement module for better feature extraction from small or occluded pedestrians, integrating the AFF channel attention mechanism to resolve semantic and scale inconsistencies, and introducing the AKConv dynamic convolution for enhanced contextual information capture in dynamic scenes. We propose evaluating a public benchmark that integrates three datasets: KITTI, EuroCity, and BDD100K. The improved YOLOv9-DeepSORT model shows strong performance across different datasets. On the KITTI Dataset, the model achieved 98.12 % precision, 92.48 % recall, a [email protected] of 95.73 %, and a [email protected]:0.95 of 90.68 %. Meanwhile, on the EuroCity Persons dataset, the results were 95.12 % precision, 90.55 % recall, a [email protected] of 94.50 %, and a [email protected]:0.95 of 79.12 %. These results highlight the model’s effectiveness in different pedestrian detection and tracking scenarios, demonstrating improved performance in both urban and challenging environments.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"254 \",\"pages\":\"Article 118009\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125013685\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125013685","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于复杂的城市环境,行人经常与周围物体混合,影响检测精度,因此自动驾驶系统中的行人检测具有挑战性。为了解决这些挑战,本文提出了一种将YOLOv9检测算法与DeepSORT跟踪相结合的新型多目标跟踪(MOT)模型。关键改进包括用CAM上下文增强模块替换主干的RepNSCPELAN4模块,以便更好地从小型或遮挡的行人中提取特征;集成AFF通道注意机制以解决语义和规模不一致;引入AKConv动态卷积以增强动态场景中的上下文信息捕获。我们建议评估一个公共基准,该基准集成了三个数据集:KITTI、EuroCity和BDD100K。改进的YOLOv9-DeepSORT模型在不同的数据集上表现出很强的性能。在KITTI数据集上,该模型的准确率为98.12%,召回率为92.48%,[email protected]为95.73%,[email protected]为0.95(90.68%)。同时,在EuroCity Persons数据集上,结果准确率为95.12%,召回率为90.55%,[email protected]为94.50%,[email protected]为0.95(79.12%)。这些结果突出了该模型在不同行人检测和跟踪场景中的有效性,在城市和具有挑战性的环境中都展示了改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detection and tracking using an enhanced YOLOv9 model for automotive vehicles
Pedestrian detection in autonomous driving systems is challenging due to complex urban environments, where pedestrians often blend with surrounding objects, affecting detection accuracy. To address these challenges, this paper presents a novel multi-object tracking (MOT) model combining the YOLOv9 detection algorithm with DeepSORT tracking. Key improvements include replacing the Backbone’s RepNSCPELAN4 module with a CAM context enhancement module for better feature extraction from small or occluded pedestrians, integrating the AFF channel attention mechanism to resolve semantic and scale inconsistencies, and introducing the AKConv dynamic convolution for enhanced contextual information capture in dynamic scenes. We propose evaluating a public benchmark that integrates three datasets: KITTI, EuroCity, and BDD100K. The improved YOLOv9-DeepSORT model shows strong performance across different datasets. On the KITTI Dataset, the model achieved 98.12 % precision, 92.48 % recall, a [email protected] of 95.73 %, and a [email protected]:0.95 of 90.68 %. Meanwhile, on the EuroCity Persons dataset, the results were 95.12 % precision, 90.55 % recall, a [email protected] of 94.50 %, and a [email protected]:0.95 of 79.12 %. These results highlight the model’s effectiveness in different pedestrian detection and tracking scenarios, demonstrating improved performance in both urban and challenging environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信