Xing Chen, Yi Li, Chenying Pan, Shenda Weng, Xiaoya Xie, Bangjie Zhou, Hao Dong* and Danhua Zhu*,
{"title":"基于耳道分泌物挥发性有机化合物的帕金森病人工智能嗅觉诊断模型","authors":"Xing Chen, Yi Li, Chenying Pan, Shenda Weng, Xiaoya Xie, Bangjie Zhou, Hao Dong* and Danhua Zhu*, ","doi":"10.1021/acs.analchem.5c00908","DOIUrl":null,"url":null,"abstract":"<p >Parkinson’s Disease (PD), a frequently diagnosed neurodegenerative condition, poses a major global challenge. Early diagnosis and intervention are crucial for PD treatment. This study proposes a diagnostic model for PD that analyzes volatile organic compounds (VOCs) from ear canal secretions (ECS). Using gas chromatography–mass spectrometry (GC-MS) to examine ECS samples from patients, four VOC components (ethylbenzene, 4-ethyltoluene, pentanal, and 2-pentadecyl-1,3-dioxolane) were identified as biomarkers with statistically significant differences between PD and non-PD patients. Diagnostic models based on these VOC components demonstrate strong capability in identifying and classifying PD patients. To enhance the accuracy and efficiency of the PD diagnostic model, this study introduces a protocol for extracting features from chromatographic data. By integrating gas chromatography–surface acoustic wave sensors (GC-SAW) with a convolutional neural network (CNN) model, the system achieves an accuracy of up to 94.4%. Further enhancements to the diagnostic model could pave the way for a promising new PD diagnostic solution and the clinical use of a bedside PD diagnostic device.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 24","pages":"12633–12641"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Artificial Intelligence Olfactory-Based Diagnostic Model for Parkinson’s Disease Using Volatile Organic Compounds from Ear Canal Secretions\",\"authors\":\"Xing Chen, Yi Li, Chenying Pan, Shenda Weng, Xiaoya Xie, Bangjie Zhou, Hao Dong* and Danhua Zhu*, \",\"doi\":\"10.1021/acs.analchem.5c00908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Parkinson’s Disease (PD), a frequently diagnosed neurodegenerative condition, poses a major global challenge. Early diagnosis and intervention are crucial for PD treatment. This study proposes a diagnostic model for PD that analyzes volatile organic compounds (VOCs) from ear canal secretions (ECS). Using gas chromatography–mass spectrometry (GC-MS) to examine ECS samples from patients, four VOC components (ethylbenzene, 4-ethyltoluene, pentanal, and 2-pentadecyl-1,3-dioxolane) were identified as biomarkers with statistically significant differences between PD and non-PD patients. Diagnostic models based on these VOC components demonstrate strong capability in identifying and classifying PD patients. To enhance the accuracy and efficiency of the PD diagnostic model, this study introduces a protocol for extracting features from chromatographic data. By integrating gas chromatography–surface acoustic wave sensors (GC-SAW) with a convolutional neural network (CNN) model, the system achieves an accuracy of up to 94.4%. Further enhancements to the diagnostic model could pave the way for a promising new PD diagnostic solution and the clinical use of a bedside PD diagnostic device.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 24\",\"pages\":\"12633–12641\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c00908\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c00908","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An Artificial Intelligence Olfactory-Based Diagnostic Model for Parkinson’s Disease Using Volatile Organic Compounds from Ear Canal Secretions
Parkinson’s Disease (PD), a frequently diagnosed neurodegenerative condition, poses a major global challenge. Early diagnosis and intervention are crucial for PD treatment. This study proposes a diagnostic model for PD that analyzes volatile organic compounds (VOCs) from ear canal secretions (ECS). Using gas chromatography–mass spectrometry (GC-MS) to examine ECS samples from patients, four VOC components (ethylbenzene, 4-ethyltoluene, pentanal, and 2-pentadecyl-1,3-dioxolane) were identified as biomarkers with statistically significant differences between PD and non-PD patients. Diagnostic models based on these VOC components demonstrate strong capability in identifying and classifying PD patients. To enhance the accuracy and efficiency of the PD diagnostic model, this study introduces a protocol for extracting features from chromatographic data. By integrating gas chromatography–surface acoustic wave sensors (GC-SAW) with a convolutional neural network (CNN) model, the system achieves an accuracy of up to 94.4%. Further enhancements to the diagnostic model could pave the way for a promising new PD diagnostic solution and the clinical use of a bedside PD diagnostic device.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.