Maryam Vosough, Felix Drees, Guido Sieber, Tom L. Stach, Daniela Beisser, Alexander J. Probst, Jens Boenigk, Torsten C. Schmidt
{"title":"应用多元统计方法综合分析非靶向LC-HRMS和高通量元条形码数据用于水生环境研究","authors":"Maryam Vosough, Felix Drees, Guido Sieber, Tom L. Stach, Daniela Beisser, Alexander J. Probst, Jens Boenigk, Torsten C. Schmidt","doi":"10.1021/acs.analchem.5c00539","DOIUrl":null,"url":null,"abstract":"Significant progress in high-throughput analytical techniques has paved the way for novel approaches to integrating data sets from different compartments. This study leverages nontarget screening (NTS) via liquid chromatography-high-resolution mass spectrometry (LC-HRMS), a crucial technique for analyzing organic micropollutants and their transformation products, in combination with biological indicators. We propose a combined multivariate data processing framework that integrates LC-HRMS-based NTS data with other high-throughput data sets, exemplified here by 18S V9 rRNA and full-length 16S rRNA gene metabarcoding data sets. The power of data fusion is demonstrated by systematically evaluating the impact of treated wastewater (TWW) over time on an aquatic ecosystem through a controlled mesocosm experiment. Highly compressed NTS data were compiled through the implementation of the region of interest-multivariate curve resolution-alternating least-squares (MCR-ALS) method, known as ROIMCR. By integrating ANOVA-simultaneous component analysis with structural learning and integrative decomposition (SLIDE), the innovative SLIDE-ASCA approach enables the decomposition of global and partial common, as well as distinct variation sources arising from experimental factors and their possible interactions. SLIDE-ASCA results indicate that temporal variability explains a much larger portion of the variance (74.6%) than the treatment effect, with both contributing to global shared space variation (41%). Design structure benefits include enhanced interpretability, improved detection of key features, and a more accurate representation of complex interactions between chemical and biological data. This approach offers a greater understanding of the natural and wastewater-influenced temporal patterns for each data source, as well as reveals associations between chemical and biological markers in an exemplified perturbed aquatic ecosystem.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"110 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative Analysis of Nontargeted LC-HRMS and High-Throughput Metabarcoding Data for Aquatic Environmental Studies Using Combined Multivariate Statistical Approaches\",\"authors\":\"Maryam Vosough, Felix Drees, Guido Sieber, Tom L. Stach, Daniela Beisser, Alexander J. Probst, Jens Boenigk, Torsten C. Schmidt\",\"doi\":\"10.1021/acs.analchem.5c00539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant progress in high-throughput analytical techniques has paved the way for novel approaches to integrating data sets from different compartments. This study leverages nontarget screening (NTS) via liquid chromatography-high-resolution mass spectrometry (LC-HRMS), a crucial technique for analyzing organic micropollutants and their transformation products, in combination with biological indicators. We propose a combined multivariate data processing framework that integrates LC-HRMS-based NTS data with other high-throughput data sets, exemplified here by 18S V9 rRNA and full-length 16S rRNA gene metabarcoding data sets. The power of data fusion is demonstrated by systematically evaluating the impact of treated wastewater (TWW) over time on an aquatic ecosystem through a controlled mesocosm experiment. Highly compressed NTS data were compiled through the implementation of the region of interest-multivariate curve resolution-alternating least-squares (MCR-ALS) method, known as ROIMCR. By integrating ANOVA-simultaneous component analysis with structural learning and integrative decomposition (SLIDE), the innovative SLIDE-ASCA approach enables the decomposition of global and partial common, as well as distinct variation sources arising from experimental factors and their possible interactions. SLIDE-ASCA results indicate that temporal variability explains a much larger portion of the variance (74.6%) than the treatment effect, with both contributing to global shared space variation (41%). Design structure benefits include enhanced interpretability, improved detection of key features, and a more accurate representation of complex interactions between chemical and biological data. This approach offers a greater understanding of the natural and wastewater-influenced temporal patterns for each data source, as well as reveals associations between chemical and biological markers in an exemplified perturbed aquatic ecosystem.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c00539\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Integrative Analysis of Nontargeted LC-HRMS and High-Throughput Metabarcoding Data for Aquatic Environmental Studies Using Combined Multivariate Statistical Approaches
Significant progress in high-throughput analytical techniques has paved the way for novel approaches to integrating data sets from different compartments. This study leverages nontarget screening (NTS) via liquid chromatography-high-resolution mass spectrometry (LC-HRMS), a crucial technique for analyzing organic micropollutants and their transformation products, in combination with biological indicators. We propose a combined multivariate data processing framework that integrates LC-HRMS-based NTS data with other high-throughput data sets, exemplified here by 18S V9 rRNA and full-length 16S rRNA gene metabarcoding data sets. The power of data fusion is demonstrated by systematically evaluating the impact of treated wastewater (TWW) over time on an aquatic ecosystem through a controlled mesocosm experiment. Highly compressed NTS data were compiled through the implementation of the region of interest-multivariate curve resolution-alternating least-squares (MCR-ALS) method, known as ROIMCR. By integrating ANOVA-simultaneous component analysis with structural learning and integrative decomposition (SLIDE), the innovative SLIDE-ASCA approach enables the decomposition of global and partial common, as well as distinct variation sources arising from experimental factors and their possible interactions. SLIDE-ASCA results indicate that temporal variability explains a much larger portion of the variance (74.6%) than the treatment effect, with both contributing to global shared space variation (41%). Design structure benefits include enhanced interpretability, improved detection of key features, and a more accurate representation of complex interactions between chemical and biological data. This approach offers a greater understanding of the natural and wastewater-influenced temporal patterns for each data source, as well as reveals associations between chemical and biological markers in an exemplified perturbed aquatic ecosystem.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.