{"title":"Orbitrap星质谱计非靶向代谢组学数据的增强结构引导分子网络注释方法","authors":"Xinxin Wang, Yao Chen, Zaifang Li, Ziquan Fan, Rui Zhong, Tian Liu, Xiangjun Li, Xin Lu, Guowang Xu","doi":"10.1021/acs.analchem.5c00314","DOIUrl":null,"url":null,"abstract":"The rapid, efficient, and accurate annotation of compounds in complex samples remains a significant challenge in metabolomics. The recently developed Orbitrap Astral mass spectrometer (MS) integrates a traditional quadrupole Orbitrap with a novel Astral mass analyzer, providing fast MS/MS scanning speed and high sensitivity. However, existing metabolomics annotation methods have not fully exploited the advanced capabilities of Astral MS. In this study, an enhanced structure-guided molecular networking (E-SGMN) method was developed, which is specifically tailored for the Orbitrap Astral mass spectrometer (MS). Unlike previous network annotation methods, E-SGMN extracted both previously detected metabolites and those potentially detected by Astral from the metabolome database, enabling more efficient and accurate network construction through structural similarity. E-SGMN expands annotation coverage by accurately improving network size, while minimizing the inclusion of irrelevant compounds, achieving a balance between annotation scale and accuracy. Validation results revealed that Astral-E-SGMN achieved an annotation coverage and accuracy of 76.84% and 78.08%, respectively, for a spiked plasma, significantly outperforming E-SGMN-Q Exactive HF (E-SGMN-QE HF). Notably, 5440 metabolite features from NIST SRM 1950 human plasma were annotated by Astral-E-SGMN, a 3.6-fold increase over QE HF-SGMN. Comparative analyses for six types of typical biological samples demonstrate that E-SGMN-Astral enhanced metabolite annotations by 3.7–44.2 times compared to conventional annotation methods, highlighting E-SGMN’s wider metabolite annotation coverage. This method not only enhances annotation coverage, but also provides a transformative tool for understanding complex biological systems, holding significant potential for life science and clinical medicine.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"36 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Structure-guided Molecular Networking Annotation Method for Untargeted Metabolomics Data from Orbitrap Astral Mass Spectrometer\",\"authors\":\"Xinxin Wang, Yao Chen, Zaifang Li, Ziquan Fan, Rui Zhong, Tian Liu, Xiangjun Li, Xin Lu, Guowang Xu\",\"doi\":\"10.1021/acs.analchem.5c00314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid, efficient, and accurate annotation of compounds in complex samples remains a significant challenge in metabolomics. The recently developed Orbitrap Astral mass spectrometer (MS) integrates a traditional quadrupole Orbitrap with a novel Astral mass analyzer, providing fast MS/MS scanning speed and high sensitivity. However, existing metabolomics annotation methods have not fully exploited the advanced capabilities of Astral MS. In this study, an enhanced structure-guided molecular networking (E-SGMN) method was developed, which is specifically tailored for the Orbitrap Astral mass spectrometer (MS). Unlike previous network annotation methods, E-SGMN extracted both previously detected metabolites and those potentially detected by Astral from the metabolome database, enabling more efficient and accurate network construction through structural similarity. E-SGMN expands annotation coverage by accurately improving network size, while minimizing the inclusion of irrelevant compounds, achieving a balance between annotation scale and accuracy. Validation results revealed that Astral-E-SGMN achieved an annotation coverage and accuracy of 76.84% and 78.08%, respectively, for a spiked plasma, significantly outperforming E-SGMN-Q Exactive HF (E-SGMN-QE HF). Notably, 5440 metabolite features from NIST SRM 1950 human plasma were annotated by Astral-E-SGMN, a 3.6-fold increase over QE HF-SGMN. Comparative analyses for six types of typical biological samples demonstrate that E-SGMN-Astral enhanced metabolite annotations by 3.7–44.2 times compared to conventional annotation methods, highlighting E-SGMN’s wider metabolite annotation coverage. This method not only enhances annotation coverage, but also provides a transformative tool for understanding complex biological systems, holding significant potential for life science and clinical medicine.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c00314\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00314","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Enhanced Structure-guided Molecular Networking Annotation Method for Untargeted Metabolomics Data from Orbitrap Astral Mass Spectrometer
The rapid, efficient, and accurate annotation of compounds in complex samples remains a significant challenge in metabolomics. The recently developed Orbitrap Astral mass spectrometer (MS) integrates a traditional quadrupole Orbitrap with a novel Astral mass analyzer, providing fast MS/MS scanning speed and high sensitivity. However, existing metabolomics annotation methods have not fully exploited the advanced capabilities of Astral MS. In this study, an enhanced structure-guided molecular networking (E-SGMN) method was developed, which is specifically tailored for the Orbitrap Astral mass spectrometer (MS). Unlike previous network annotation methods, E-SGMN extracted both previously detected metabolites and those potentially detected by Astral from the metabolome database, enabling more efficient and accurate network construction through structural similarity. E-SGMN expands annotation coverage by accurately improving network size, while minimizing the inclusion of irrelevant compounds, achieving a balance between annotation scale and accuracy. Validation results revealed that Astral-E-SGMN achieved an annotation coverage and accuracy of 76.84% and 78.08%, respectively, for a spiked plasma, significantly outperforming E-SGMN-Q Exactive HF (E-SGMN-QE HF). Notably, 5440 metabolite features from NIST SRM 1950 human plasma were annotated by Astral-E-SGMN, a 3.6-fold increase over QE HF-SGMN. Comparative analyses for six types of typical biological samples demonstrate that E-SGMN-Astral enhanced metabolite annotations by 3.7–44.2 times compared to conventional annotation methods, highlighting E-SGMN’s wider metabolite annotation coverage. This method not only enhances annotation coverage, but also provides a transformative tool for understanding complex biological systems, holding significant potential for life science and clinical medicine.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.