基于脑电表征的深度学习模型预测重度抑郁症脑刺激结果。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohsen Sadat Shahabi, Ahmad Shalbaf, Reza Rostami, Reza Kazemi
{"title":"基于脑电表征的深度学习模型预测重度抑郁症脑刺激结果。","authors":"Mohsen Sadat Shahabi, Ahmad Shalbaf, Reza Rostami, Reza Kazemi","doi":"10.1080/10255842.2025.2511222","DOIUrl":null,"url":null,"abstract":"<p><p>Major Depressive Disorder (MDD) is known as a widespread illness and needs a timely treatment. The treatment procedure is currently based on the trial and error between various treatments. An individualized treatment selection is crucial for saving time and financial resources and preventing possible side effects. Because of the complex nature of this problem, a Deep Learning (DL) approach, as a promising method for the precision medicine, was utilized to identify the responders to the treatment using pre-treatment EEG signals. Eighty-three patients with MDD participated in this study to receive treatment using Repetitive Transcranial Magnetic Stimulation (rTMS). A deep hybrid neural network was developed based on three pre-trained convolutional neural networks named DenseNet121, EfficientNetB0, and Xception. The training of each model was performed by feeding three types of EEG representations as the inputs into the models including the Wavelet Transform (WT) images, the connectivity matrix between electrode pairs, and the raw EEG signals. The performance of the proposed models were assessed for the three different input types and achieved the highest accuracy of 94.7% in classifying patients as responders or non-responders when utilizing a sequence of raw EEG images. For the WT and connectivity inputs the best accuracy of model was 94.38% and 94.25% respectively. Therefore, the proposed model can be a step forward towards the clinical implementation of an end-to-end treatment selection framework using raw EEG signals.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain stimulation outcome prediction in Major Depressive Disorder by deep learning models using EEG representations.\",\"authors\":\"Mohsen Sadat Shahabi, Ahmad Shalbaf, Reza Rostami, Reza Kazemi\",\"doi\":\"10.1080/10255842.2025.2511222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major Depressive Disorder (MDD) is known as a widespread illness and needs a timely treatment. The treatment procedure is currently based on the trial and error between various treatments. An individualized treatment selection is crucial for saving time and financial resources and preventing possible side effects. Because of the complex nature of this problem, a Deep Learning (DL) approach, as a promising method for the precision medicine, was utilized to identify the responders to the treatment using pre-treatment EEG signals. Eighty-three patients with MDD participated in this study to receive treatment using Repetitive Transcranial Magnetic Stimulation (rTMS). A deep hybrid neural network was developed based on three pre-trained convolutional neural networks named DenseNet121, EfficientNetB0, and Xception. The training of each model was performed by feeding three types of EEG representations as the inputs into the models including the Wavelet Transform (WT) images, the connectivity matrix between electrode pairs, and the raw EEG signals. The performance of the proposed models were assessed for the three different input types and achieved the highest accuracy of 94.7% in classifying patients as responders or non-responders when utilizing a sequence of raw EEG images. For the WT and connectivity inputs the best accuracy of model was 94.38% and 94.25% respectively. Therefore, the proposed model can be a step forward towards the clinical implementation of an end-to-end treatment selection framework using raw EEG signals.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2511222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2511222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

重度抑郁症(MDD)是一种普遍存在的疾病,需要及时治疗。治疗程序目前是基于各种治疗方法之间的试验和错误。个性化的治疗选择对于节省时间和财政资源以及预防可能的副作用至关重要。由于该问题的复杂性,深度学习(DL)方法作为一种有前途的精准医学方法,被用于使用预处理脑电图信号来识别治疗的应答者。83例重度抑郁症患者接受了重复经颅磁刺激(rTMS)治疗。基于三个预训练的卷积神经网络DenseNet121、EfficientNetB0和Xception,开发了一个深度混合神经网络。通过将小波变换图像、电极对之间的连通性矩阵和原始脑电信号三种脑电信号表示作为模型的输入,对每个模型进行训练。在三种不同的输入类型下对所提出模型的性能进行了评估,当使用一系列原始脑电图图像时,在将患者分类为应答者或无应答者方面达到了94.7%的最高准确率。对于WT和连通性输入,模型的最佳准确率分别为94.38%和94.25%。因此,所提出的模型可以向使用原始脑电图信号的端到端治疗选择框架的临床实施迈进一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain stimulation outcome prediction in Major Depressive Disorder by deep learning models using EEG representations.

Major Depressive Disorder (MDD) is known as a widespread illness and needs a timely treatment. The treatment procedure is currently based on the trial and error between various treatments. An individualized treatment selection is crucial for saving time and financial resources and preventing possible side effects. Because of the complex nature of this problem, a Deep Learning (DL) approach, as a promising method for the precision medicine, was utilized to identify the responders to the treatment using pre-treatment EEG signals. Eighty-three patients with MDD participated in this study to receive treatment using Repetitive Transcranial Magnetic Stimulation (rTMS). A deep hybrid neural network was developed based on three pre-trained convolutional neural networks named DenseNet121, EfficientNetB0, and Xception. The training of each model was performed by feeding three types of EEG representations as the inputs into the models including the Wavelet Transform (WT) images, the connectivity matrix between electrode pairs, and the raw EEG signals. The performance of the proposed models were assessed for the three different input types and achieved the highest accuracy of 94.7% in classifying patients as responders or non-responders when utilizing a sequence of raw EEG images. For the WT and connectivity inputs the best accuracy of model was 94.38% and 94.25% respectively. Therefore, the proposed model can be a step forward towards the clinical implementation of an end-to-end treatment selection framework using raw EEG signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信