线粒体克隆嵌合体编码衰老的双相分子钟。

IF 17 Q1 CELL BIOLOGY
Zhenguo Wang, Zhe Li, Hongyu Liu, Chenghua Yang, Xin Li
{"title":"线粒体克隆嵌合体编码衰老的双相分子钟。","authors":"Zhenguo Wang, Zhe Li, Hongyu Liu, Chenghua Yang, Xin Li","doi":"10.1038/s43587-025-00890-6","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria rapidly accumulate mutations throughout a lifetime, potentially acting as a molecular clock for aging and disease. We profiled mitochondrial RNA across 47 human tissues from 838 individuals, revealing rapid development of clonal mosaicism with two distinct tissue-specific aging signatures. Tissues with constant cellular turnover such as the gastrointestinal tract or skin exhibit accelerated accumulation of sporadic mutations and clonal expansions, implicating increased susceptibility to age-related tumorigenesis and dysfunction. By contrast, post-mitotic tissues, such as the heart and brain, accumulate mutations at deterministic hotspots (tissue-specific, recurrently mutated sites), reflecting the cumulative burden of high energy demand and mitochondrial turnover independent of cell division. These findings support a biphasic model of the mitochondrial clock: stochastic clonal expansion of sporadic replication errors in proliferative tissues, versus age-dependent heteroplasmy increases at hotspots in high-metabolic tissues. This mutational landscape provides a map of tissue-specific vulnerabilities during aging and offers potential therapeutic targets.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":17.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial clonal mosaicism encodes a biphasic molecular clock of aging.\",\"authors\":\"Zhenguo Wang, Zhe Li, Hongyu Liu, Chenghua Yang, Xin Li\",\"doi\":\"10.1038/s43587-025-00890-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria rapidly accumulate mutations throughout a lifetime, potentially acting as a molecular clock for aging and disease. We profiled mitochondrial RNA across 47 human tissues from 838 individuals, revealing rapid development of clonal mosaicism with two distinct tissue-specific aging signatures. Tissues with constant cellular turnover such as the gastrointestinal tract or skin exhibit accelerated accumulation of sporadic mutations and clonal expansions, implicating increased susceptibility to age-related tumorigenesis and dysfunction. By contrast, post-mitotic tissues, such as the heart and brain, accumulate mutations at deterministic hotspots (tissue-specific, recurrently mutated sites), reflecting the cumulative burden of high energy demand and mitochondrial turnover independent of cell division. These findings support a biphasic model of the mitochondrial clock: stochastic clonal expansion of sporadic replication errors in proliferative tissues, versus age-dependent heteroplasmy increases at hotspots in high-metabolic tissues. This mutational landscape provides a map of tissue-specific vulnerabilities during aging and offers potential therapeutic targets.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-025-00890-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00890-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体在一生中迅速积累突变,可能充当衰老和疾病的分子钟。我们分析了来自838个个体的47个人体组织的线粒体RNA,揭示了克隆嵌合体的快速发展,具有两种不同的组织特异性衰老特征。具有持续细胞更新的组织,如胃肠道或皮肤,表现出散发性突变和克隆扩增的加速积累,这意味着对年龄相关的肿瘤发生和功能障碍的易感性增加。相比之下,有丝分裂后的组织,如心脏和大脑,在确定性热点(组织特异性,反复突变的位点)积累突变,反映了高能量需求和独立于细胞分裂的线粒体周转的累积负担。这些发现支持线粒体时钟的双相模型:增殖性组织中散发性复制错误的随机克隆扩增,与高代谢组织中热点地区年龄依赖性异质性的增加。这种突变景观提供了衰老过程中组织特异性脆弱性的地图,并提供了潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial clonal mosaicism encodes a biphasic molecular clock of aging.

Mitochondria rapidly accumulate mutations throughout a lifetime, potentially acting as a molecular clock for aging and disease. We profiled mitochondrial RNA across 47 human tissues from 838 individuals, revealing rapid development of clonal mosaicism with two distinct tissue-specific aging signatures. Tissues with constant cellular turnover such as the gastrointestinal tract or skin exhibit accelerated accumulation of sporadic mutations and clonal expansions, implicating increased susceptibility to age-related tumorigenesis and dysfunction. By contrast, post-mitotic tissues, such as the heart and brain, accumulate mutations at deterministic hotspots (tissue-specific, recurrently mutated sites), reflecting the cumulative burden of high energy demand and mitochondrial turnover independent of cell division. These findings support a biphasic model of the mitochondrial clock: stochastic clonal expansion of sporadic replication errors in proliferative tissues, versus age-dependent heteroplasmy increases at hotspots in high-metabolic tissues. This mutational landscape provides a map of tissue-specific vulnerabilities during aging and offers potential therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信