高分辨率DynaCT与t2加权MRI图像融合在dDBS图像引导规划中的应用。

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Fadil Al-Jaberi, Matthias Moeskes, Martin Skalej, Melanie Fachet, Christoph Hoeschen
{"title":"高分辨率DynaCT与t2加权MRI图像融合在dDBS图像引导规划中的应用。","authors":"Fadil Al-Jaberi, Matthias Moeskes, Martin Skalej, Melanie Fachet, Christoph Hoeschen","doi":"10.3390/brainsci15050521","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> This study aimed to develop a semi-automated registration method for aligning preoperative non-contrast T2-weighted MRI with postoperative high-resolution cone-beam CT (DynaCT) in patients undergoing directional deep brain stimulation (dDBS) surgery targeting the subthalamic nucleus (STN). The aim was to facilitate image-guided programming of DBS devices and postoperative verification of the alignment of segmented contacts. <b>Materials and Methods:</b> A dataset of ten patients undergoing bilateral dDBS implantation was retrospectively collected, including DynaCT (acquired postoperatively) and non-contrast T2-weighted MRI (obtained preoperatively). A semi-automated registration method was used, employing manual initialization due to dissimilar anatomical information between DynaCT and T2-weighted MRI. Image visualization, initial alignment using a centered transformation initializer, and single-resolution image registration involving the Simple Insight Toolkit (SimpleITK) library were performed. Manual landmark-based alignment based on anatomical landmarks and evaluation metrics such as Target Registration Error (TRE) assessed alignment accuracy. <b>Results:</b> The registration method successfully aligned all images. Quantitative evaluation revealed an average of the mean TRE of 1.48 mm across all subjects, indicating satisfactory alignment quality. Multiplanar reformations (MPRs) based on electrode-oriented normal vectors visualized segmented contacts for accurate electrode placement. <b>Conclusions:</b> The developed method demonstrated successful registration between preoperative non-contrast T2-weighted MRI and postoperative DynaCT, despite dissimilar anatomical information. This approach facilitates accurate alignment crucial for DBS programming and postoperative verification, potentially reducing the programming time of the DBS. The study underscores the importance of image quality, manual initialization and semi-automated registration methods for successful multimodal image registration in dDBS procedures targeting the STN.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110002/pdf/","citationCount":"0","resultStr":"{\"title\":\"Image Fusion of High-Resolution DynaCT and T2-Weighted MRI for Image-Guided Programming of dDBS.\",\"authors\":\"Fadil Al-Jaberi, Matthias Moeskes, Martin Skalej, Melanie Fachet, Christoph Hoeschen\",\"doi\":\"10.3390/brainsci15050521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives:</b> This study aimed to develop a semi-automated registration method for aligning preoperative non-contrast T2-weighted MRI with postoperative high-resolution cone-beam CT (DynaCT) in patients undergoing directional deep brain stimulation (dDBS) surgery targeting the subthalamic nucleus (STN). The aim was to facilitate image-guided programming of DBS devices and postoperative verification of the alignment of segmented contacts. <b>Materials and Methods:</b> A dataset of ten patients undergoing bilateral dDBS implantation was retrospectively collected, including DynaCT (acquired postoperatively) and non-contrast T2-weighted MRI (obtained preoperatively). A semi-automated registration method was used, employing manual initialization due to dissimilar anatomical information between DynaCT and T2-weighted MRI. Image visualization, initial alignment using a centered transformation initializer, and single-resolution image registration involving the Simple Insight Toolkit (SimpleITK) library were performed. Manual landmark-based alignment based on anatomical landmarks and evaluation metrics such as Target Registration Error (TRE) assessed alignment accuracy. <b>Results:</b> The registration method successfully aligned all images. Quantitative evaluation revealed an average of the mean TRE of 1.48 mm across all subjects, indicating satisfactory alignment quality. Multiplanar reformations (MPRs) based on electrode-oriented normal vectors visualized segmented contacts for accurate electrode placement. <b>Conclusions:</b> The developed method demonstrated successful registration between preoperative non-contrast T2-weighted MRI and postoperative DynaCT, despite dissimilar anatomical information. This approach facilitates accurate alignment crucial for DBS programming and postoperative verification, potentially reducing the programming time of the DBS. The study underscores the importance of image quality, manual initialization and semi-automated registration methods for successful multimodal image registration in dDBS procedures targeting the STN.</p>\",\"PeriodicalId\":9095,\"journal\":{\"name\":\"Brain Sciences\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110002/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/brainsci15050521\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15050521","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在开发一种半自动配准方法,用于针对丘脑底核(STN)定向深部脑刺激(dDBS)手术患者的术前非对比t2加权MRI与术后高分辨率锥束CT (DynaCT)对齐。目的是促进图像引导的DBS装置编程和术后验证分段接触的对齐。材料和方法:回顾性收集10例双侧dDBS植入患者的数据集,包括DynaCT(术后获得)和非对比t2加权MRI(术前获得)。采用半自动配准方法,由于DynaCT和t2加权MRI解剖信息不同,采用手动初始化。执行了图像可视化、使用居中转换初始化器的初始对齐,以及涉及Simple Insight Toolkit (SimpleITK)库的单分辨率图像配准。基于解剖标志和评价指标(如目标配准误差(TRE))的手动地标定位方法评估了定位精度。结果:该配准方法成功对准了所有图像。定量评估显示,所有受试者的平均TRE平均值为1.48 mm,表明对齐质量令人满意。基于面向电极法向量的多平面重构(MPRs)可视化分割触点,实现了精确的电极放置。结论:尽管解剖信息不同,但该方法在术前非对比t2加权MRI和术后DynaCT之间成功匹配。这种方法促进了对DBS编程和术后验证至关重要的精确对齐,潜在地减少了DBS的编程时间。该研究强调了图像质量、手动初始化和半自动配准方法对于针对STN的dDBS程序中成功的多模态图像配准的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Fusion of High-Resolution DynaCT and T2-Weighted MRI for Image-Guided Programming of dDBS.

Objectives: This study aimed to develop a semi-automated registration method for aligning preoperative non-contrast T2-weighted MRI with postoperative high-resolution cone-beam CT (DynaCT) in patients undergoing directional deep brain stimulation (dDBS) surgery targeting the subthalamic nucleus (STN). The aim was to facilitate image-guided programming of DBS devices and postoperative verification of the alignment of segmented contacts. Materials and Methods: A dataset of ten patients undergoing bilateral dDBS implantation was retrospectively collected, including DynaCT (acquired postoperatively) and non-contrast T2-weighted MRI (obtained preoperatively). A semi-automated registration method was used, employing manual initialization due to dissimilar anatomical information between DynaCT and T2-weighted MRI. Image visualization, initial alignment using a centered transformation initializer, and single-resolution image registration involving the Simple Insight Toolkit (SimpleITK) library were performed. Manual landmark-based alignment based on anatomical landmarks and evaluation metrics such as Target Registration Error (TRE) assessed alignment accuracy. Results: The registration method successfully aligned all images. Quantitative evaluation revealed an average of the mean TRE of 1.48 mm across all subjects, indicating satisfactory alignment quality. Multiplanar reformations (MPRs) based on electrode-oriented normal vectors visualized segmented contacts for accurate electrode placement. Conclusions: The developed method demonstrated successful registration between preoperative non-contrast T2-weighted MRI and postoperative DynaCT, despite dissimilar anatomical information. This approach facilitates accurate alignment crucial for DBS programming and postoperative verification, potentially reducing the programming time of the DBS. The study underscores the importance of image quality, manual initialization and semi-automated registration methods for successful multimodal image registration in dDBS procedures targeting the STN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信