采用HS-SPME-GC-MS和随机森林结合的人工采样法研究了咖啡在麦芽/发酵过程中的感官特征

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Evandro Messias , Cleidiana V. Guimarães , José M.R. da Luz , Ellisson H. de Paulo , Emanuele C. da S. Oliveira , Márcia H.C. Nascimento , Marco F. Ferrão , Rogério C. Guarçoni , Paulo R. Filgueiras , Lucas L. Pereira
{"title":"采用HS-SPME-GC-MS和随机森林结合的人工采样法研究了咖啡在麦芽/发酵过程中的感官特征","authors":"Evandro Messias ,&nbsp;Cleidiana V. Guimarães ,&nbsp;José M.R. da Luz ,&nbsp;Ellisson H. de Paulo ,&nbsp;Emanuele C. da S. Oliveira ,&nbsp;Márcia H.C. Nascimento ,&nbsp;Marco F. Ferrão ,&nbsp;Rogério C. Guarçoni ,&nbsp;Paulo R. Filgueiras ,&nbsp;Lucas L. Pereira","doi":"10.1016/j.foodchem.2025.144907","DOIUrl":null,"url":null,"abstract":"<div><div>The sensory attributes of <em>Coffea canephora</em> beverages depend on the chemical composition of the bean, especially to the content of volatile organic compounds (VOCs). However, the relative abundance of these compounds may vary with the stage of bean maturation. This study investigated the VOCs responsible for the sensory attributes of <em>Coffea canephora</em> after malting and fermentation with <em>Saccharomyces cerevisiae</em> using HS-SPME-GC‐MS and random forest analysis with synthetic sampling. Ninety-four VOCs were identified, of which approximately 10 % contributed to discriminating the sensory profiles of the beverage. After 64 h of fermentation, malting treatments using fructose (T2), glucose (T3), and cellulase (T4) increased the sensory scores compared to natural coffee. The maceration/fermentation of coffee berries generated intense microbial activity, favoring the generation of VOCs. The machine learning methods proved efficient in identifying VOCs. Odor activity values demonstrated that the VOCs identified by this method were relevant to the sensory profile of coffee beverage.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"489 ","pages":"Article 144907"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the sensory profile of Coffea canephora through malting/fermentation using HS-SPME-GC‐MS and synthetic sampling combined with random forest\",\"authors\":\"Evandro Messias ,&nbsp;Cleidiana V. Guimarães ,&nbsp;José M.R. da Luz ,&nbsp;Ellisson H. de Paulo ,&nbsp;Emanuele C. da S. Oliveira ,&nbsp;Márcia H.C. Nascimento ,&nbsp;Marco F. Ferrão ,&nbsp;Rogério C. Guarçoni ,&nbsp;Paulo R. Filgueiras ,&nbsp;Lucas L. Pereira\",\"doi\":\"10.1016/j.foodchem.2025.144907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sensory attributes of <em>Coffea canephora</em> beverages depend on the chemical composition of the bean, especially to the content of volatile organic compounds (VOCs). However, the relative abundance of these compounds may vary with the stage of bean maturation. This study investigated the VOCs responsible for the sensory attributes of <em>Coffea canephora</em> after malting and fermentation with <em>Saccharomyces cerevisiae</em> using HS-SPME-GC‐MS and random forest analysis with synthetic sampling. Ninety-four VOCs were identified, of which approximately 10 % contributed to discriminating the sensory profiles of the beverage. After 64 h of fermentation, malting treatments using fructose (T2), glucose (T3), and cellulase (T4) increased the sensory scores compared to natural coffee. The maceration/fermentation of coffee berries generated intense microbial activity, favoring the generation of VOCs. The machine learning methods proved efficient in identifying VOCs. Odor activity values demonstrated that the VOCs identified by this method were relevant to the sensory profile of coffee beverage.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"489 \",\"pages\":\"Article 144907\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625021582\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625021582","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

咖啡饮品的感官属性取决于咖啡豆的化学成分,尤其是挥发性有机化合物(VOCs)的含量。然而,这些化合物的相对丰度可能随着豆类成熟的阶段而变化。采用HS-SPME-GC-MS和随机森林分析方法,研究了啤酒酿造和酿酒酵母发酵后咖啡的挥发性有机化合物(VOCs)。鉴定出94种挥发性有机化合物,其中约10 %有助于区分饮料的感官特征。发酵64 h后,与天然咖啡相比,使用果糖(T2)、葡萄糖(T3)和纤维素酶(T4)的麦芽处理提高了感官评分。咖啡浆果的浸渍/发酵产生了强烈的微生物活动,有利于挥发性有机化合物的产生。机器学习方法在识别挥发性有机化合物方面被证明是有效的。气味活性值表明,该方法识别的挥发性有机化合物与咖啡饮料的感官特征有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the sensory profile of Coffea canephora through malting/fermentation using HS-SPME-GC‐MS and synthetic sampling combined with random forest
The sensory attributes of Coffea canephora beverages depend on the chemical composition of the bean, especially to the content of volatile organic compounds (VOCs). However, the relative abundance of these compounds may vary with the stage of bean maturation. This study investigated the VOCs responsible for the sensory attributes of Coffea canephora after malting and fermentation with Saccharomyces cerevisiae using HS-SPME-GC‐MS and random forest analysis with synthetic sampling. Ninety-four VOCs were identified, of which approximately 10 % contributed to discriminating the sensory profiles of the beverage. After 64 h of fermentation, malting treatments using fructose (T2), glucose (T3), and cellulase (T4) increased the sensory scores compared to natural coffee. The maceration/fermentation of coffee berries generated intense microbial activity, favoring the generation of VOCs. The machine learning methods proved efficient in identifying VOCs. Odor activity values demonstrated that the VOCs identified by this method were relevant to the sensory profile of coffee beverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信