列车-桥梁系统的有效地震反应建模:一种时间序列混合方法

IF 5.7 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ping Xiang , Xiaonan Xie , Zhanjun Shao , Hongkai Ma , Peng Zhang , Han Zhao
{"title":"列车-桥梁系统的有效地震反应建模:一种时间序列混合方法","authors":"Ping Xiang ,&nbsp;Xiaonan Xie ,&nbsp;Zhanjun Shao ,&nbsp;Hongkai Ma ,&nbsp;Peng Zhang ,&nbsp;Han Zhao","doi":"10.1016/j.advengsoft.2025.103957","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an innovative surrogate modeling approach for predicting seismic responses in train-bridge coupled (TBC) systems, utilizing the Time Series Mixer (TSMixer) neural network. The model features a multi-layered architecture with sliding time windows, ensuring continuous, real-time analysis. We refined key performance metrics to address limitations in traditional response evaluation, particularly in handling phase discrepancies. The TSMixer model demonstrates high accuracy across a variety of seismic waves and system parameters, making it a valuable tool for rapid prediction in urban seismic scenarios. By offering swift and precise assessments, this approach has significant implications for improving the design efficiency of high-speed rail systems under seismic conditions. This research advances the field by introducing a robust method capable of capturing the nonlinear dynamics of TBC systems, fulfilling modern engineering demands for speed and precision in seismic analysis.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"207 ","pages":"Article 103957"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient seismic response modeling for train-bridge systems: A time series mixer approach\",\"authors\":\"Ping Xiang ,&nbsp;Xiaonan Xie ,&nbsp;Zhanjun Shao ,&nbsp;Hongkai Ma ,&nbsp;Peng Zhang ,&nbsp;Han Zhao\",\"doi\":\"10.1016/j.advengsoft.2025.103957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces an innovative surrogate modeling approach for predicting seismic responses in train-bridge coupled (TBC) systems, utilizing the Time Series Mixer (TSMixer) neural network. The model features a multi-layered architecture with sliding time windows, ensuring continuous, real-time analysis. We refined key performance metrics to address limitations in traditional response evaluation, particularly in handling phase discrepancies. The TSMixer model demonstrates high accuracy across a variety of seismic waves and system parameters, making it a valuable tool for rapid prediction in urban seismic scenarios. By offering swift and precise assessments, this approach has significant implications for improving the design efficiency of high-speed rail systems under seismic conditions. This research advances the field by introducing a robust method capable of capturing the nonlinear dynamics of TBC systems, fulfilling modern engineering demands for speed and precision in seismic analysis.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"207 \",\"pages\":\"Article 103957\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096599782500095X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096599782500095X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用时间序列混频器(TSMixer)神经网络预测列车-桥梁耦合(TBC)系统地震反应的创新代理建模方法。该模型具有多层结构和滑动时间窗口,确保了连续、实时的分析。我们改进了关键性能指标,以解决传统响应评估中的局限性,特别是在处理阶段差异方面。TSMixer模型在各种地震波和系统参数中都具有很高的精度,使其成为城市地震场景快速预测的宝贵工具。通过提供快速和精确的评估,该方法对提高高速铁路系统在地震条件下的设计效率具有重要意义。本研究通过引入一种能够捕获TBC系统非线性动力学的鲁棒方法推进了该领域的发展,满足了现代工程对地震分析速度和精度的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient seismic response modeling for train-bridge systems: A time series mixer approach
This paper introduces an innovative surrogate modeling approach for predicting seismic responses in train-bridge coupled (TBC) systems, utilizing the Time Series Mixer (TSMixer) neural network. The model features a multi-layered architecture with sliding time windows, ensuring continuous, real-time analysis. We refined key performance metrics to address limitations in traditional response evaluation, particularly in handling phase discrepancies. The TSMixer model demonstrates high accuracy across a variety of seismic waves and system parameters, making it a valuable tool for rapid prediction in urban seismic scenarios. By offering swift and precise assessments, this approach has significant implications for improving the design efficiency of high-speed rail systems under seismic conditions. This research advances the field by introducing a robust method capable of capturing the nonlinear dynamics of TBC systems, fulfilling modern engineering demands for speed and precision in seismic analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信