{"title":"脱细胞植物的工程血管移植物:进展与挑战。","authors":"Nick Merna","doi":"10.14670/HH-18-934","DOIUrl":null,"url":null,"abstract":"<p><p>Small-caliber vascular grafts (<6 mm diameter) are critical for coronary and peripheral bypass surgeries, yet developing functional substitutes remains challenging. Autologous vessels are ideal but often unavailable or of poor quality. Synthetic grafts, such as expanded polytetrafluoroethylene (ePTFE) and Dacron, have high failure rates in small diameters due to thrombosis, intimal hyperplasia, and compliance mismatch. Tissue-engineered vascular grafts (TEVGs) aim to overcome these issues by providing a biocompatible scaffold with an endothelial lining. Decellularized plant tissues have recently gained attention as natural scaffolds for TEVGs due to their structural similarity to human vasculature. Leaves and stems provide an extracellular matrix (ECM) primarily composed of cellulose, which is biocompatible, porous, and non-thrombogenic. These scaffolds are cost-effective, scalable, and ethically uncontroversial. Decellularized parsley stems or leatherleaf leaves, for instance, can be recellularized with endothelial and smooth muscle cells (SMCs) to create small-diameter grafts that support endothelialization and withstand physiological pressures. Perfusion bioreactors further enhance the functionality of plant-based grafts by simulating physiological conditions. Pulsatile flow and pressure stimulate endothelial cell alignment, reducing thrombogenicity, while mechanical stimulation promotes SMC maturation and ECM deposition, improving graft strength and compliance. This review summarizes recent advances in plant-based vascular grafts and perfusion bioreactor conditioning, compares their performance to conventional grafts, and highlights remaining challenges. Decellularized plant scaffolds, with their inherent vascular architecture and biocompatibility, show promise as natural templates for small-caliber vascular grafts. However, further research is needed to address key challenges such as standardization, mechanical optimization, and long-term <i>in vivo</i> validation to facilitate their clinical application.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"18934"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering vascular grafts from decellularized plants: Advances and challenges.\",\"authors\":\"Nick Merna\",\"doi\":\"10.14670/HH-18-934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small-caliber vascular grafts (<6 mm diameter) are critical for coronary and peripheral bypass surgeries, yet developing functional substitutes remains challenging. Autologous vessels are ideal but often unavailable or of poor quality. Synthetic grafts, such as expanded polytetrafluoroethylene (ePTFE) and Dacron, have high failure rates in small diameters due to thrombosis, intimal hyperplasia, and compliance mismatch. Tissue-engineered vascular grafts (TEVGs) aim to overcome these issues by providing a biocompatible scaffold with an endothelial lining. Decellularized plant tissues have recently gained attention as natural scaffolds for TEVGs due to their structural similarity to human vasculature. Leaves and stems provide an extracellular matrix (ECM) primarily composed of cellulose, which is biocompatible, porous, and non-thrombogenic. These scaffolds are cost-effective, scalable, and ethically uncontroversial. Decellularized parsley stems or leatherleaf leaves, for instance, can be recellularized with endothelial and smooth muscle cells (SMCs) to create small-diameter grafts that support endothelialization and withstand physiological pressures. Perfusion bioreactors further enhance the functionality of plant-based grafts by simulating physiological conditions. Pulsatile flow and pressure stimulate endothelial cell alignment, reducing thrombogenicity, while mechanical stimulation promotes SMC maturation and ECM deposition, improving graft strength and compliance. This review summarizes recent advances in plant-based vascular grafts and perfusion bioreactor conditioning, compares their performance to conventional grafts, and highlights remaining challenges. Decellularized plant scaffolds, with their inherent vascular architecture and biocompatibility, show promise as natural templates for small-caliber vascular grafts. However, further research is needed to address key challenges such as standardization, mechanical optimization, and long-term <i>in vivo</i> validation to facilitate their clinical application.</p>\",\"PeriodicalId\":13164,\"journal\":{\"name\":\"Histology and histopathology\",\"volume\":\" \",\"pages\":\"18934\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histology and histopathology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.14670/HH-18-934\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-934","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Engineering vascular grafts from decellularized plants: Advances and challenges.
Small-caliber vascular grafts (<6 mm diameter) are critical for coronary and peripheral bypass surgeries, yet developing functional substitutes remains challenging. Autologous vessels are ideal but often unavailable or of poor quality. Synthetic grafts, such as expanded polytetrafluoroethylene (ePTFE) and Dacron, have high failure rates in small diameters due to thrombosis, intimal hyperplasia, and compliance mismatch. Tissue-engineered vascular grafts (TEVGs) aim to overcome these issues by providing a biocompatible scaffold with an endothelial lining. Decellularized plant tissues have recently gained attention as natural scaffolds for TEVGs due to their structural similarity to human vasculature. Leaves and stems provide an extracellular matrix (ECM) primarily composed of cellulose, which is biocompatible, porous, and non-thrombogenic. These scaffolds are cost-effective, scalable, and ethically uncontroversial. Decellularized parsley stems or leatherleaf leaves, for instance, can be recellularized with endothelial and smooth muscle cells (SMCs) to create small-diameter grafts that support endothelialization and withstand physiological pressures. Perfusion bioreactors further enhance the functionality of plant-based grafts by simulating physiological conditions. Pulsatile flow and pressure stimulate endothelial cell alignment, reducing thrombogenicity, while mechanical stimulation promotes SMC maturation and ECM deposition, improving graft strength and compliance. This review summarizes recent advances in plant-based vascular grafts and perfusion bioreactor conditioning, compares their performance to conventional grafts, and highlights remaining challenges. Decellularized plant scaffolds, with their inherent vascular architecture and biocompatibility, show promise as natural templates for small-caliber vascular grafts. However, further research is needed to address key challenges such as standardization, mechanical optimization, and long-term in vivo validation to facilitate their clinical application.
期刊介绍:
HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.