Shuo Xu, Ajiao Hou, Jiaxu Zhang, Jinhao Xue, Shiwen Gao, Hai Jiang, Liu Yang
{"title":"应用网络药理学、生物信息学和分子对接技术研究赤芍治疗静脉血栓形成的机制。","authors":"Shuo Xu, Ajiao Hou, Jiaxu Zhang, Jinhao Xue, Shiwen Gao, Hai Jiang, Liu Yang","doi":"10.2174/0113816128374345250521115849","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study investigates the potential targets and mechanisms of Paeoniae Radix Rubra (PRR) in treating Venous Thrombosis (VTE) by employing network pharmacology, bioinformatics analysis, and molecular docking validation.</p><p><strong>Methods: </strong>Active components of PRR were identified via TCMSP. VTE-related genes were screened from GEO datasets, and WGCNA analyzed key modules. A Protein-Protein Interaction (PPI) network was constructed using Cytoscape, followed by immune infiltration analysis. Core targets were functionally annotated via GO and KEGG pathways. Molecular docking and molecular dynamics simulations validated interactions between PRR components and core targets.</p><p><strong>Results: </strong>A total of 30 active components of PRR and 21 potential targets for the treatment of VTE were identified. From the PPI network, 10 hub genes were screened. KEGG pathway enrichment analysis demonstrated that the target genes were significantly enriched in pathways, such as the cGMP-PKG signaling pathway, B cell receptor signaling pathway, Th1 and Th2 cell differentiation, and IL-17 signaling pathway. Molecular docking results revealed that MAPK1, NFATC1, and SELP all had good affinity with the screened active components. Among them, MAPK1 and beta-sitosterol exhibited the highest binding energy of -8.73 kcal/mol.</p><p><strong>Conclusion: </strong>Through this study, it was found that PRR may act on targets, such as MAPK1 and NFATC1, through components like beta-sitosterol and Stigmasterol. Among them, the complex (beta-sitosterol - MAPK1) may be the key active component that plays a role in treating VTE.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into the Mechanisms of Paeoniae Radix Rubra in the Treatment of Venous Thrombosis Using Network Pharmacology, Bioinformatics, and Molecular Docking Techniques.\",\"authors\":\"Shuo Xu, Ajiao Hou, Jiaxu Zhang, Jinhao Xue, Shiwen Gao, Hai Jiang, Liu Yang\",\"doi\":\"10.2174/0113816128374345250521115849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study investigates the potential targets and mechanisms of Paeoniae Radix Rubra (PRR) in treating Venous Thrombosis (VTE) by employing network pharmacology, bioinformatics analysis, and molecular docking validation.</p><p><strong>Methods: </strong>Active components of PRR were identified via TCMSP. VTE-related genes were screened from GEO datasets, and WGCNA analyzed key modules. A Protein-Protein Interaction (PPI) network was constructed using Cytoscape, followed by immune infiltration analysis. Core targets were functionally annotated via GO and KEGG pathways. Molecular docking and molecular dynamics simulations validated interactions between PRR components and core targets.</p><p><strong>Results: </strong>A total of 30 active components of PRR and 21 potential targets for the treatment of VTE were identified. From the PPI network, 10 hub genes were screened. KEGG pathway enrichment analysis demonstrated that the target genes were significantly enriched in pathways, such as the cGMP-PKG signaling pathway, B cell receptor signaling pathway, Th1 and Th2 cell differentiation, and IL-17 signaling pathway. Molecular docking results revealed that MAPK1, NFATC1, and SELP all had good affinity with the screened active components. Among them, MAPK1 and beta-sitosterol exhibited the highest binding energy of -8.73 kcal/mol.</p><p><strong>Conclusion: </strong>Through this study, it was found that PRR may act on targets, such as MAPK1 and NFATC1, through components like beta-sitosterol and Stigmasterol. Among them, the complex (beta-sitosterol - MAPK1) may be the key active component that plays a role in treating VTE.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128374345250521115849\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128374345250521115849","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Investigation into the Mechanisms of Paeoniae Radix Rubra in the Treatment of Venous Thrombosis Using Network Pharmacology, Bioinformatics, and Molecular Docking Techniques.
Objective: This study investigates the potential targets and mechanisms of Paeoniae Radix Rubra (PRR) in treating Venous Thrombosis (VTE) by employing network pharmacology, bioinformatics analysis, and molecular docking validation.
Methods: Active components of PRR were identified via TCMSP. VTE-related genes were screened from GEO datasets, and WGCNA analyzed key modules. A Protein-Protein Interaction (PPI) network was constructed using Cytoscape, followed by immune infiltration analysis. Core targets were functionally annotated via GO and KEGG pathways. Molecular docking and molecular dynamics simulations validated interactions between PRR components and core targets.
Results: A total of 30 active components of PRR and 21 potential targets for the treatment of VTE were identified. From the PPI network, 10 hub genes were screened. KEGG pathway enrichment analysis demonstrated that the target genes were significantly enriched in pathways, such as the cGMP-PKG signaling pathway, B cell receptor signaling pathway, Th1 and Th2 cell differentiation, and IL-17 signaling pathway. Molecular docking results revealed that MAPK1, NFATC1, and SELP all had good affinity with the screened active components. Among them, MAPK1 and beta-sitosterol exhibited the highest binding energy of -8.73 kcal/mol.
Conclusion: Through this study, it was found that PRR may act on targets, such as MAPK1 and NFATC1, through components like beta-sitosterol and Stigmasterol. Among them, the complex (beta-sitosterol - MAPK1) may be the key active component that plays a role in treating VTE.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.