Fei Yu , Jia-Lin Ji , Ying Wang , Yi-Di Liu , Yi-Mei Lian , Meng-Zhen Wang , Zheng-Xu Cai
{"title":"三辛酸的抗癫痫和肠道保护作用以及肠道微生物群在癫痫小鼠模型中的关键作用。","authors":"Fei Yu , Jia-Lin Ji , Ying Wang , Yi-Di Liu , Yi-Mei Lian , Meng-Zhen Wang , Zheng-Xu Cai","doi":"10.1016/j.brainresbull.2025.111401","DOIUrl":null,"url":null,"abstract":"<div><div>Gut microbiota structure and function affect metabolism, gut health, and behavioral responses and are regulated by dietary factors. Recent research suggests the association of the gut-brain axis with epilepsy pathogenesis, thus offering potential new therapeutic targets. This study evaluated the anti-epileptic effect of trioctanoin and explored the potential role of the gut microbiota in a chronic pentylentetrazol (PTZ)-induced seizure mouse model. Behavioral assessments, electroencephalogram monitoring, immunofluorescence staining, neurotransmitter detection, gut microbiota sequencing, intestinal barrier function tests, and Fecal Microbiota Transplantation (FMT) were performed to systematically study the anti-epileptic effects of trioctanoin and the potential role of microbiota. Trioctanoin significantly restored glial cell proliferation to normal levels in chronic PTZ mice. Moreover, trioctanoin reduced elevated glutamate levels in the hippocampus of PTZ mice and improved gut microbiota imbalance and gut health by restoring the abundance of <em>Dubosiella</em> and <em>Faecalibaculum</em> genera, upregulating tight junction protein expression in the colon, and decreasing elevated levels of the inflammatory markers. Antibiotics(Abx) pre-treatment abolished the anticonvulsant protective effect of Trioctanoin. Although the FMT experiment did not transfer the anticonvulsant protection to the Abx+PTZ group mice, the results suggest that FMT still partially restored the gut microbiota imbalance in the chronic PTZ-induced epilepsy mouse model. These results provide new insights into dietary and gut microbiota-based therapeutic strategies for epilepsy.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"227 ","pages":"Article 111401"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-epileptic and gut-protective effects of trioctanoin and the critical role of gut microbiota in a mouse model of epilepsy\",\"authors\":\"Fei Yu , Jia-Lin Ji , Ying Wang , Yi-Di Liu , Yi-Mei Lian , Meng-Zhen Wang , Zheng-Xu Cai\",\"doi\":\"10.1016/j.brainresbull.2025.111401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gut microbiota structure and function affect metabolism, gut health, and behavioral responses and are regulated by dietary factors. Recent research suggests the association of the gut-brain axis with epilepsy pathogenesis, thus offering potential new therapeutic targets. This study evaluated the anti-epileptic effect of trioctanoin and explored the potential role of the gut microbiota in a chronic pentylentetrazol (PTZ)-induced seizure mouse model. Behavioral assessments, electroencephalogram monitoring, immunofluorescence staining, neurotransmitter detection, gut microbiota sequencing, intestinal barrier function tests, and Fecal Microbiota Transplantation (FMT) were performed to systematically study the anti-epileptic effects of trioctanoin and the potential role of microbiota. Trioctanoin significantly restored glial cell proliferation to normal levels in chronic PTZ mice. Moreover, trioctanoin reduced elevated glutamate levels in the hippocampus of PTZ mice and improved gut microbiota imbalance and gut health by restoring the abundance of <em>Dubosiella</em> and <em>Faecalibaculum</em> genera, upregulating tight junction protein expression in the colon, and decreasing elevated levels of the inflammatory markers. Antibiotics(Abx) pre-treatment abolished the anticonvulsant protective effect of Trioctanoin. Although the FMT experiment did not transfer the anticonvulsant protection to the Abx+PTZ group mice, the results suggest that FMT still partially restored the gut microbiota imbalance in the chronic PTZ-induced epilepsy mouse model. These results provide new insights into dietary and gut microbiota-based therapeutic strategies for epilepsy.</div></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"227 \",\"pages\":\"Article 111401\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923025002138\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025002138","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Anti-epileptic and gut-protective effects of trioctanoin and the critical role of gut microbiota in a mouse model of epilepsy
Gut microbiota structure and function affect metabolism, gut health, and behavioral responses and are regulated by dietary factors. Recent research suggests the association of the gut-brain axis with epilepsy pathogenesis, thus offering potential new therapeutic targets. This study evaluated the anti-epileptic effect of trioctanoin and explored the potential role of the gut microbiota in a chronic pentylentetrazol (PTZ)-induced seizure mouse model. Behavioral assessments, electroencephalogram monitoring, immunofluorescence staining, neurotransmitter detection, gut microbiota sequencing, intestinal barrier function tests, and Fecal Microbiota Transplantation (FMT) were performed to systematically study the anti-epileptic effects of trioctanoin and the potential role of microbiota. Trioctanoin significantly restored glial cell proliferation to normal levels in chronic PTZ mice. Moreover, trioctanoin reduced elevated glutamate levels in the hippocampus of PTZ mice and improved gut microbiota imbalance and gut health by restoring the abundance of Dubosiella and Faecalibaculum genera, upregulating tight junction protein expression in the colon, and decreasing elevated levels of the inflammatory markers. Antibiotics(Abx) pre-treatment abolished the anticonvulsant protective effect of Trioctanoin. Although the FMT experiment did not transfer the anticonvulsant protection to the Abx+PTZ group mice, the results suggest that FMT still partially restored the gut microbiota imbalance in the chronic PTZ-induced epilepsy mouse model. These results provide new insights into dietary and gut microbiota-based therapeutic strategies for epilepsy.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.