正规矩阵的可分解数值范围

IF 1 3区 数学 Q1 MATHEMATICS
Pan-Shun Lau , Chi-Kwong Li , Nung-Sing Sze
{"title":"正规矩阵的可分解数值范围","authors":"Pan-Shun Lau ,&nbsp;Chi-Kwong Li ,&nbsp;Nung-Sing Sze","doi":"10.1016/j.laa.2025.05.016","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the set of <span><math><mi>n</mi><mo>×</mo><mi>k</mi></math></span> (<span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>) complex matrices, and <span><math><mrow><mi>per</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the permanent of a square matrix <em>X</em>. We study the three types of generalized numerical ranges associated with generalized matrix functions<span><span><span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><munderover><mo>∏</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mi>per</mi></mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We give complete descriptions of the set <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for essentially hermitian matrices <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, all three sets are star-shaped. For <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> normal matrices <em>A</em>, it is known that <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is convex. We show that <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are star-shaped. This affirms a conjecture of Nakazato et al.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 237-254"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposable numerical ranges of normal matrices\",\"authors\":\"Pan-Shun Lau ,&nbsp;Chi-Kwong Li ,&nbsp;Nung-Sing Sze\",\"doi\":\"10.1016/j.laa.2025.05.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the set of <span><math><mi>n</mi><mo>×</mo><mi>k</mi></math></span> (<span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>) complex matrices, and <span><math><mrow><mi>per</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the permanent of a square matrix <em>X</em>. We study the three types of generalized numerical ranges associated with generalized matrix functions<span><span><span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><munderover><mo>∏</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mi>per</mi></mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We give complete descriptions of the set <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for essentially hermitian matrices <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, all three sets are star-shaped. For <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> normal matrices <em>A</em>, it is known that <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is convex. We show that <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are star-shaped. This affirms a conjecture of Nakazato et al.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"722 \",\"pages\":\"Pages 237-254\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002290\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002290","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Mn,k (Mn)是n×k (n×n)复矩阵的集合,per(X)是方阵X的恒量,我们研究了广义矩阵functionsΠk(a)={∏j=1k(V AV)ii:V∈Mn,k,V V=Ik},Dk(a)={det (V AV):V∈Mn,k,V V=Ik}, pk (a)={per(V AV):V∈Mn,k,V V=Ik}的三种广义数值范围。对于本质上的厄米矩阵A∈Mn,我们给出了集合Π2(A), D2(A)和P2(A)的完整描述。特别的是,这三套都是星形的。对于3×3正规矩阵A,已知D2(A)是凸的。我们发现Π2(A)和P2(A)是星形的。这证实了Nakazato等人的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposable numerical ranges of normal matrices
Let Mn,k (Mn) be the set of n×k (n×n) complex matrices, and per(X) be the permanent of a square matrix X. We study the three types of generalized numerical ranges associated with generalized matrix functionsΠk(A)={j=1k(VAV)ii:VMn,k,VV=Ik},Dk(A)={det(VAV):VMn,k,VV=Ik}, andPk(A)={per(VAV):VMn,k,VV=Ik}. We give complete descriptions of the set Π2(A), D2(A) and P2(A) for essentially hermitian matrices AMn. In particular, all three sets are star-shaped. For 3×3 normal matrices A, it is known that D2(A) is convex. We show that Π2(A) and P2(A) are star-shaped. This affirms a conjecture of Nakazato et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信