{"title":"正规矩阵的可分解数值范围","authors":"Pan-Shun Lau , Chi-Kwong Li , Nung-Sing Sze","doi":"10.1016/j.laa.2025.05.016","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the set of <span><math><mi>n</mi><mo>×</mo><mi>k</mi></math></span> (<span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>) complex matrices, and <span><math><mrow><mi>per</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the permanent of a square matrix <em>X</em>. We study the three types of generalized numerical ranges associated with generalized matrix functions<span><span><span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><munderover><mo>∏</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>det</mi><mo></mo><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mi>per</mi></mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We give complete descriptions of the set <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for essentially hermitian matrices <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, all three sets are star-shaped. For <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> normal matrices <em>A</em>, it is known that <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is convex. We show that <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are star-shaped. This affirms a conjecture of Nakazato et al.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"722 ","pages":"Pages 237-254"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposable numerical ranges of normal matrices\",\"authors\":\"Pan-Shun Lau , Chi-Kwong Li , Nung-Sing Sze\",\"doi\":\"10.1016/j.laa.2025.05.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the set of <span><math><mi>n</mi><mo>×</mo><mi>k</mi></math></span> (<span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>) complex matrices, and <span><math><mrow><mi>per</mi></mrow><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the permanent of a square matrix <em>X</em>. We study the three types of generalized numerical ranges associated with generalized matrix functions<span><span><span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><munderover><mo>∏</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo></mrow><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mi>det</mi><mo></mo><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>,</mo></math></span></span></span> and<span><span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mi>per</mi></mrow><mo>(</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>A</mi><mi>V</mi><mo>)</mo><mo>:</mo><mi>V</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>V</mi><mo>=</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We give complete descriptions of the set <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for essentially hermitian matrices <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, all three sets are star-shaped. For <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> normal matrices <em>A</em>, it is known that <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is convex. We show that <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are star-shaped. This affirms a conjecture of Nakazato et al.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"722 \",\"pages\":\"Pages 237-254\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002290\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002290","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let () be the set of () complex matrices, and be the permanent of a square matrix X. We study the three types of generalized numerical ranges associated with generalized matrix functions and We give complete descriptions of the set , and for essentially hermitian matrices . In particular, all three sets are star-shaped. For normal matrices A, it is known that is convex. We show that and are star-shaped. This affirms a conjecture of Nakazato et al.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.