AlGaN/GaN异质结双极晶体管,记录f /f ₓ=21.6 /4.23 GHz

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lian Zhang;Jianxing Xu;Jiaheng He;Zhe Cheng;Weibin Wang;Chunyan Liu;Xiaodong Wang;Changxin Mi;Wei Tan;Yun Zhang
{"title":"AlGaN/GaN异质结双极晶体管,记录f <e:1> /f <s:1>ₓ=21.6 /4.23 GHz","authors":"Lian Zhang;Jianxing Xu;Jiaheng He;Zhe Cheng;Weibin Wang;Chunyan Liu;Xiaodong Wang;Changxin Mi;Wei Tan;Yun Zhang","doi":"10.1109/LED.2025.3558540","DOIUrl":null,"url":null,"abstract":"We report a novel GaN heterojunction bipolar transistor (HBT) featuring n-AlGaN/n+-GaN emitter layers, achieving a record <inline-formula> <tex-math>${f}_{T}/{f}_{\\textit {MAX}} =21.6$ </tex-math></inline-formula>/4.23 GHz at the current density of 12.7 mA and V<inline-formula> <tex-math>${}_{\\text {CE}}=10$ </tex-math></inline-formula>V. This is the first time that the frequency of GaN HBTs have been extended to the S-band. The exceptional performance is attributed to three advancements in material and device fabrication: 1) regrowth emitter technology is used to achieve base ohmic contact, thereby reducing the parasitic base resistance; 2) An n+-GaN emitter cap layer is used to achieve an ultra-low specific contact resistance of <inline-formula> <tex-math>$1.35\\times 10^{-{7}}\\Omega \\cdot $ </tex-math></inline-formula>cm2, effectively lowering the total emitter resistance, thereby reducing the collector charging time <inline-formula> <tex-math>$\\tau _{C}$ </tex-math></inline-formula>; 3) down-scaling technologies, which reduce the parasitic base resistance and the base-collector (BC) junction capacitance, also helps to increasing the <inline-formula> <tex-math>${f}_{T}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${f}_{\\textit {max}}$ </tex-math></inline-formula>. The device demonstrates a power density of 1.31 MW/cm2, which is the highest for GaN HBTs on sapphire. These results underscore the potential of GaN HBTs for high-power, high-efficiency RF applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 6","pages":"912-915"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlGaN/GaN Heterojunction Bipolar Transistors With Record fᴛ/fₘₐₓ=21.6 /4.23 GHz\",\"authors\":\"Lian Zhang;Jianxing Xu;Jiaheng He;Zhe Cheng;Weibin Wang;Chunyan Liu;Xiaodong Wang;Changxin Mi;Wei Tan;Yun Zhang\",\"doi\":\"10.1109/LED.2025.3558540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a novel GaN heterojunction bipolar transistor (HBT) featuring n-AlGaN/n+-GaN emitter layers, achieving a record <inline-formula> <tex-math>${f}_{T}/{f}_{\\\\textit {MAX}} =21.6$ </tex-math></inline-formula>/4.23 GHz at the current density of 12.7 mA and V<inline-formula> <tex-math>${}_{\\\\text {CE}}=10$ </tex-math></inline-formula>V. This is the first time that the frequency of GaN HBTs have been extended to the S-band. The exceptional performance is attributed to three advancements in material and device fabrication: 1) regrowth emitter technology is used to achieve base ohmic contact, thereby reducing the parasitic base resistance; 2) An n+-GaN emitter cap layer is used to achieve an ultra-low specific contact resistance of <inline-formula> <tex-math>$1.35\\\\times 10^{-{7}}\\\\Omega \\\\cdot $ </tex-math></inline-formula>cm2, effectively lowering the total emitter resistance, thereby reducing the collector charging time <inline-formula> <tex-math>$\\\\tau _{C}$ </tex-math></inline-formula>; 3) down-scaling technologies, which reduce the parasitic base resistance and the base-collector (BC) junction capacitance, also helps to increasing the <inline-formula> <tex-math>${f}_{T}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${f}_{\\\\textit {max}}$ </tex-math></inline-formula>. The device demonstrates a power density of 1.31 MW/cm2, which is the highest for GaN HBTs on sapphire. These results underscore the potential of GaN HBTs for high-power, high-efficiency RF applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 6\",\"pages\":\"912-915\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955262/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10955262/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种新型GaN异质结双极晶体管(HBT),具有n- algan /n+-GaN发射极层,在电流密度为12.7 mA和V ${}_{\text {CE}}=10$ V时实现了创纪录的${f}_{T}/{f}_{\textit {MAX}} =21.6$ /4.23 GHz,这是GaN HBT的频率首次扩展到s波段。优异的性能归功于材料和器件制造方面的三个进步:1)利用再生发射极技术实现基极欧姆接触,从而降低寄生基极电阻;2)采用n+-GaN发射极帽层实现了$1.35\times 10^{-{7}}\Omega \cdot $ cm2的超低比接触电阻,有效降低了发射极总电阻,从而缩短了集电极充电时间$\tau _{C}$;3)降尺度技术,降低寄生基极电阻和基极集电极(BC)结电容,也有助于增加${f}_{T}$和${f}_{\textit {max}}$。该器件的功率密度为1.31 MW/cm2,是蓝宝石上GaN HBTs的最高功率密度。这些结果强调了GaN hbt在高功率、高效率射频应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AlGaN/GaN Heterojunction Bipolar Transistors With Record fᴛ/fₘₐₓ=21.6 /4.23 GHz
We report a novel GaN heterojunction bipolar transistor (HBT) featuring n-AlGaN/n+-GaN emitter layers, achieving a record ${f}_{T}/{f}_{\textit {MAX}} =21.6$ /4.23 GHz at the current density of 12.7 mA and V ${}_{\text {CE}}=10$ V. This is the first time that the frequency of GaN HBTs have been extended to the S-band. The exceptional performance is attributed to three advancements in material and device fabrication: 1) regrowth emitter technology is used to achieve base ohmic contact, thereby reducing the parasitic base resistance; 2) An n+-GaN emitter cap layer is used to achieve an ultra-low specific contact resistance of $1.35\times 10^{-{7}}\Omega \cdot $ cm2, effectively lowering the total emitter resistance, thereby reducing the collector charging time $\tau _{C}$ ; 3) down-scaling technologies, which reduce the parasitic base resistance and the base-collector (BC) junction capacitance, also helps to increasing the ${f}_{T}$ and ${f}_{\textit {max}}$ . The device demonstrates a power density of 1.31 MW/cm2, which is the highest for GaN HBTs on sapphire. These results underscore the potential of GaN HBTs for high-power, high-efficiency RF applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信