基于实空间分离和互反空间分离的无轨道密度泛函

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bishal Thapa, Tracey G. Oellerich, Maria Emelianenko, Phanish Suryanarayana, Igor I. Mazin
{"title":"基于实空间分离和互反空间分离的无轨道密度泛函","authors":"Bishal Thapa, Tracey G. Oellerich, Maria Emelianenko, Phanish Suryanarayana, Igor I. Mazin","doi":"10.1038/s41524-025-01643-0","DOIUrl":null,"url":null,"abstract":"<p>We introduce a general class of orbital-free density functionals (OF-DFT) decomposed into a local part in coordinate space and a local part in reciprocal space. As a demonstration of principle, we choose for the former the Thomas-Fermi-von Weizsäcker (TFW) kinetic energy density functional (KEDF) and for the latter a form derived from the Lindhard function, but with the two system-dependent adjustable parameters. These parameters are machine-learned from Kohn-Sham data using Bayesian linear regression with a kernel method, which employs moments of the Fourier components of the electronic density as the descriptor. Through a number of representative cases, we demonstrate that our machine-learned model provides more than an order-of-magnitude improvement in the accuracy of the frozen-phonon energies compared to the TFW KEDF, with negligible increase in the computational cost. Overall, this work opens an avenue for the construction of accurate KEDFs for OF-DFT.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"135 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital-free density functionals based on real and reciprocal space separation\",\"authors\":\"Bishal Thapa, Tracey G. Oellerich, Maria Emelianenko, Phanish Suryanarayana, Igor I. Mazin\",\"doi\":\"10.1038/s41524-025-01643-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a general class of orbital-free density functionals (OF-DFT) decomposed into a local part in coordinate space and a local part in reciprocal space. As a demonstration of principle, we choose for the former the Thomas-Fermi-von Weizsäcker (TFW) kinetic energy density functional (KEDF) and for the latter a form derived from the Lindhard function, but with the two system-dependent adjustable parameters. These parameters are machine-learned from Kohn-Sham data using Bayesian linear regression with a kernel method, which employs moments of the Fourier components of the electronic density as the descriptor. Through a number of representative cases, we demonstrate that our machine-learned model provides more than an order-of-magnitude improvement in the accuracy of the frozen-phonon energies compared to the TFW KEDF, with negligible increase in the computational cost. Overall, this work opens an avenue for the construction of accurate KEDFs for OF-DFT.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01643-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01643-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一类一般的无轨道密度泛函(of - dft),它在坐标空间中被分解为局部部分,在倒数空间中被分解为局部部分。作为一个原理演示,我们选择前者的托马斯-费米-冯Weizsäcker (TFW)动能密度泛函(KEDF)和后者的一个形式衍生自林德函数,但有两个系统相关的可调参数。这些参数是使用核方法的贝叶斯线性回归从Kohn-Sham数据中机器学习的,该方法使用电子密度的傅立叶分量的矩作为描述符。通过一些有代表性的案例,我们证明,与TFW KEDF相比,我们的机器学习模型在冻结声子能量的精度方面提供了超过一个数量级的提高,而计算成本的增加可以忽略不计。总的来说,这项工作为构建of - dft的精确kedf开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orbital-free density functionals based on real and reciprocal space separation

Orbital-free density functionals based on real and reciprocal space separation

We introduce a general class of orbital-free density functionals (OF-DFT) decomposed into a local part in coordinate space and a local part in reciprocal space. As a demonstration of principle, we choose for the former the Thomas-Fermi-von Weizsäcker (TFW) kinetic energy density functional (KEDF) and for the latter a form derived from the Lindhard function, but with the two system-dependent adjustable parameters. These parameters are machine-learned from Kohn-Sham data using Bayesian linear regression with a kernel method, which employs moments of the Fourier components of the electronic density as the descriptor. Through a number of representative cases, we demonstrate that our machine-learned model provides more than an order-of-magnitude improvement in the accuracy of the frozen-phonon energies compared to the TFW KEDF, with negligible increase in the computational cost. Overall, this work opens an avenue for the construction of accurate KEDFs for OF-DFT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信