{"title":"具有增强磷酸酯水解酶和氧化酶样活性的分层大孔Ce-MOF纳米酶用于现场丙诺福的自级联比色检测。","authors":"Rongwei He,Lihong Guo,Xiaoxue Kou,Rui Gao,Wei Huang,Ningyi Zhong,Zhi-Wei Li,Shuyao Huang,Siming Huang,Guosheng Chen,Gangfeng Ouyang","doi":"10.1021/acs.analchem.5c01247","DOIUrl":null,"url":null,"abstract":"The extensive application of profenofos (PFF), a widely used organophosphorus pesticide (OP), has raised significant environmental and health concerns due to its accumulation in ecosystems and its inhibitory effects on acetylcholinesterase in humans. Despite advancements in analytical technologies, currently available chromatography and electrochemical assays often involve complex procedures, high costs, and specialized equipment, limiting their applicability for routine and on-site PFF monitoring. Here, we report a novel self-cascade nanozyme-based colorimetric biosensor employing a hierarchically macroporous Ce-MOF (HMUiO-66(Ce)) with integrated phosphoester hydrolase (PEH)- and oxidase (OXD)-like activities. The HMUiO-66(Ce) nanozyme features hierarchical macrochannels that enhance mass transfer and substrate accessibility, significantly improving its cascade sensing performance compared with conventional UiO-66(Ce). Through PEH-OXD cascade catalysis, PFF is hydrolyzed into 4-bromo-2-chlorophenol, which undergoes selective oxidative coupling via OXD-like catalysis, yielding a distinct red-colored product. This colorimetric response is highly specific to PFF, as other organophosphates do not trigger the OXD-catalyzed coupling, minimizing interference and ensuring high analytical selectivity. The colorimetric biosensor can be seamlessly integrated with a smartphone for on-site detection, exhibiting a broad linear detection range (0.1-50 μg/mL) and an impressively low detection limit (0.068 μg/mL), surpassing most existing colorimetric methods. This work provides new insights into the development of a highly sensitive and selective biosensor through the self-cascade principle, offering great potential for on-site screening of environmental pollutants.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"78 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically Macroporous Ce-MOF Nanozyme with Enhanced Phosphoester Hydrolase- and Oxidase-like Activities for Self-Cascade Colorimetric Detection of Profenofos On-Site.\",\"authors\":\"Rongwei He,Lihong Guo,Xiaoxue Kou,Rui Gao,Wei Huang,Ningyi Zhong,Zhi-Wei Li,Shuyao Huang,Siming Huang,Guosheng Chen,Gangfeng Ouyang\",\"doi\":\"10.1021/acs.analchem.5c01247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extensive application of profenofos (PFF), a widely used organophosphorus pesticide (OP), has raised significant environmental and health concerns due to its accumulation in ecosystems and its inhibitory effects on acetylcholinesterase in humans. Despite advancements in analytical technologies, currently available chromatography and electrochemical assays often involve complex procedures, high costs, and specialized equipment, limiting their applicability for routine and on-site PFF monitoring. Here, we report a novel self-cascade nanozyme-based colorimetric biosensor employing a hierarchically macroporous Ce-MOF (HMUiO-66(Ce)) with integrated phosphoester hydrolase (PEH)- and oxidase (OXD)-like activities. The HMUiO-66(Ce) nanozyme features hierarchical macrochannels that enhance mass transfer and substrate accessibility, significantly improving its cascade sensing performance compared with conventional UiO-66(Ce). Through PEH-OXD cascade catalysis, PFF is hydrolyzed into 4-bromo-2-chlorophenol, which undergoes selective oxidative coupling via OXD-like catalysis, yielding a distinct red-colored product. This colorimetric response is highly specific to PFF, as other organophosphates do not trigger the OXD-catalyzed coupling, minimizing interference and ensuring high analytical selectivity. The colorimetric biosensor can be seamlessly integrated with a smartphone for on-site detection, exhibiting a broad linear detection range (0.1-50 μg/mL) and an impressively low detection limit (0.068 μg/mL), surpassing most existing colorimetric methods. This work provides new insights into the development of a highly sensitive and selective biosensor through the self-cascade principle, offering great potential for on-site screening of environmental pollutants.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c01247\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Hierarchically Macroporous Ce-MOF Nanozyme with Enhanced Phosphoester Hydrolase- and Oxidase-like Activities for Self-Cascade Colorimetric Detection of Profenofos On-Site.
The extensive application of profenofos (PFF), a widely used organophosphorus pesticide (OP), has raised significant environmental and health concerns due to its accumulation in ecosystems and its inhibitory effects on acetylcholinesterase in humans. Despite advancements in analytical technologies, currently available chromatography and electrochemical assays often involve complex procedures, high costs, and specialized equipment, limiting their applicability for routine and on-site PFF monitoring. Here, we report a novel self-cascade nanozyme-based colorimetric biosensor employing a hierarchically macroporous Ce-MOF (HMUiO-66(Ce)) with integrated phosphoester hydrolase (PEH)- and oxidase (OXD)-like activities. The HMUiO-66(Ce) nanozyme features hierarchical macrochannels that enhance mass transfer and substrate accessibility, significantly improving its cascade sensing performance compared with conventional UiO-66(Ce). Through PEH-OXD cascade catalysis, PFF is hydrolyzed into 4-bromo-2-chlorophenol, which undergoes selective oxidative coupling via OXD-like catalysis, yielding a distinct red-colored product. This colorimetric response is highly specific to PFF, as other organophosphates do not trigger the OXD-catalyzed coupling, minimizing interference and ensuring high analytical selectivity. The colorimetric biosensor can be seamlessly integrated with a smartphone for on-site detection, exhibiting a broad linear detection range (0.1-50 μg/mL) and an impressively low detection limit (0.068 μg/mL), surpassing most existing colorimetric methods. This work provides new insights into the development of a highly sensitive and selective biosensor through the self-cascade principle, offering great potential for on-site screening of environmental pollutants.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.