Pooja Swali, Thomas Booth, Cedric C. S. Tan, Jesse McCabe, Kyriaki Anastasiadou, Christopher Barrington, Matteo Borrini, Adelle Bricking, Jo Buckberry, Lindsey Büster, Rea Carlin, Alexandre Gilardet, Isabelle Glocke, Joel D. Irish, Monica Kelly, Megan King, Fiona Petchey, Jessica Peto, Marina Silva, Leo Speidel, Frankie Tait, Adelina Teoaca, Satu Valoriani, Mia Williams, Richard Madgwick, Graham Mullan, Linda Wilson, Kevin Cootes, Ian Armit, Maximiliano G. Gutierrez, Lucy van Dorp, Pontus Skoglund
{"title":"古代伯氏疏螺旋体基因组记录了虱子传播的回归热的进化史","authors":"Pooja Swali, Thomas Booth, Cedric C. S. Tan, Jesse McCabe, Kyriaki Anastasiadou, Christopher Barrington, Matteo Borrini, Adelle Bricking, Jo Buckberry, Lindsey Büster, Rea Carlin, Alexandre Gilardet, Isabelle Glocke, Joel D. Irish, Monica Kelly, Megan King, Fiona Petchey, Jessica Peto, Marina Silva, Leo Speidel, Frankie Tait, Adelina Teoaca, Satu Valoriani, Mia Williams, Richard Madgwick, Graham Mullan, Linda Wilson, Kevin Cootes, Ian Armit, Maximiliano G. Gutierrez, Lucy van Dorp, Pontus Skoglund","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Several bacterial pathogens have transitioned from tick-borne to louse-borne transmission, which often involves genome reduction and increasing virulence. However, the timing of such transitions remains unclear. We sequenced four ancient <i>Borrelia recurrentis</i> genomes, the agent of louse-borne relapsing fever, dating from 2300 to 600 years ago. We estimated the divergence from its closest tick-borne relative to 6000 to 4000 years ago, which suggests an emergence coinciding with human lifestyle changes such as the advent of wool-based textiles. Pan-genome analysis indicated that much of the evolution characteristic of <i>B. recurrentis</i> had occurred by ~2300 years ago, though further gene turnover, particularly in plasmid partitioning, persisted until ~1000 years ago. Our findings provide a direct genomic chronology of the evolution of this specialized vector-borne pathogen.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6749","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ancient Borrelia genomes document the evolutionary history of louse-borne relapsing fever\",\"authors\":\"Pooja Swali, Thomas Booth, Cedric C. S. Tan, Jesse McCabe, Kyriaki Anastasiadou, Christopher Barrington, Matteo Borrini, Adelle Bricking, Jo Buckberry, Lindsey Büster, Rea Carlin, Alexandre Gilardet, Isabelle Glocke, Joel D. Irish, Monica Kelly, Megan King, Fiona Petchey, Jessica Peto, Marina Silva, Leo Speidel, Frankie Tait, Adelina Teoaca, Satu Valoriani, Mia Williams, Richard Madgwick, Graham Mullan, Linda Wilson, Kevin Cootes, Ian Armit, Maximiliano G. Gutierrez, Lucy van Dorp, Pontus Skoglund\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Several bacterial pathogens have transitioned from tick-borne to louse-borne transmission, which often involves genome reduction and increasing virulence. However, the timing of such transitions remains unclear. We sequenced four ancient <i>Borrelia recurrentis</i> genomes, the agent of louse-borne relapsing fever, dating from 2300 to 600 years ago. We estimated the divergence from its closest tick-borne relative to 6000 to 4000 years ago, which suggests an emergence coinciding with human lifestyle changes such as the advent of wool-based textiles. Pan-genome analysis indicated that much of the evolution characteristic of <i>B. recurrentis</i> had occurred by ~2300 years ago, though further gene turnover, particularly in plasmid partitioning, persisted until ~1000 years ago. Our findings provide a direct genomic chronology of the evolution of this specialized vector-borne pathogen.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"388 6749\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adr2147\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adr2147","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ancient Borrelia genomes document the evolutionary history of louse-borne relapsing fever
Several bacterial pathogens have transitioned from tick-borne to louse-borne transmission, which often involves genome reduction and increasing virulence. However, the timing of such transitions remains unclear. We sequenced four ancient Borrelia recurrentis genomes, the agent of louse-borne relapsing fever, dating from 2300 to 600 years ago. We estimated the divergence from its closest tick-borne relative to 6000 to 4000 years ago, which suggests an emergence coinciding with human lifestyle changes such as the advent of wool-based textiles. Pan-genome analysis indicated that much of the evolution characteristic of B. recurrentis had occurred by ~2300 years ago, though further gene turnover, particularly in plasmid partitioning, persisted until ~1000 years ago. Our findings provide a direct genomic chronology of the evolution of this specialized vector-borne pathogen.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.