Dy2CoMnO6中反位序和Griffiths相的实验和DFT分析:结构、电子和磁性见解

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shubha Dubey, Vipin Kumar, Kumud Dubey, Kuldeep Singh, Marcus Einert, Dipti Gawande, R. K. Sharma, Gitanjali Pagare and N. K. Gaur
{"title":"Dy2CoMnO6中反位序和Griffiths相的实验和DFT分析:结构、电子和磁性见解","authors":"Shubha Dubey, Vipin Kumar, Kumud Dubey, Kuldeep Singh, Marcus Einert, Dipti Gawande, R. K. Sharma, Gitanjali Pagare and N. K. Gaur","doi":"10.1039/D5TC00299K","DOIUrl":null,"url":null,"abstract":"<p >The intricate interaction of emergent degrees of freedom, ground state degeneracy, and competing magnetic interactions in oxide-based double perovskite frustrated magnets can give rise to exotic excitations and correlated quantum phenomena with promising technological applications. This study investigates the structural, magnetic, and electronic properties of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small> synthesized <em>via</em> solid-state reaction. Rietveld refinement of XRD data confirms a monoclinic <em>P</em>2<small><sub>1</sub></small>/<em>n</em> structure, with Raman spectra revealing BO<small><sub>6</sub></small> polyhedral dynamics. XPS analysis indicates mixed valence states of Co and Mn. Magnetic measurements show ferromagnetic ordering below <em>T</em><small><sub>c</sub></small> = 87 K due to Co<small><sup>2+</sup></small>–Mn<small><sup>4+</sup></small> superexchange, along with a Griffiths phase above <em>T</em><small><sub>c</sub></small> (<em>T</em><small><sub>G</sub></small> = 91 K) and canted antiferromagnetic correlations at low temperature. A coercivity of 6.8 kOe at 10 K further supports FM behavior. Density functional theory (DFT) calculations validate the stability of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small> in the ferromagnetic phase, showing that the ferromagnetic state is energetically more favorable than the antiferromagnetic state. The direct band gap of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small> was found to be approximately 1.47 eV, while the indirect band gap was around 1.04 eV. Electronic band structure and density of states calculations predict band gaps of 1.60 eV and 3.20 eV for the minority and majority spin orientations, respectively, confirming the semiconductor nature of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small>. These calculated values closely match the experimentally observed band gap.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 20","pages":" 10282-10301"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and DFT analysis of antisite disorder and Griffiths phase in Dy2CoMnO6: structural, electronic, and magnetic insights†\",\"authors\":\"Shubha Dubey, Vipin Kumar, Kumud Dubey, Kuldeep Singh, Marcus Einert, Dipti Gawande, R. K. Sharma, Gitanjali Pagare and N. K. Gaur\",\"doi\":\"10.1039/D5TC00299K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The intricate interaction of emergent degrees of freedom, ground state degeneracy, and competing magnetic interactions in oxide-based double perovskite frustrated magnets can give rise to exotic excitations and correlated quantum phenomena with promising technological applications. This study investigates the structural, magnetic, and electronic properties of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small> synthesized <em>via</em> solid-state reaction. Rietveld refinement of XRD data confirms a monoclinic <em>P</em>2<small><sub>1</sub></small>/<em>n</em> structure, with Raman spectra revealing BO<small><sub>6</sub></small> polyhedral dynamics. XPS analysis indicates mixed valence states of Co and Mn. Magnetic measurements show ferromagnetic ordering below <em>T</em><small><sub>c</sub></small> = 87 K due to Co<small><sup>2+</sup></small>–Mn<small><sup>4+</sup></small> superexchange, along with a Griffiths phase above <em>T</em><small><sub>c</sub></small> (<em>T</em><small><sub>G</sub></small> = 91 K) and canted antiferromagnetic correlations at low temperature. A coercivity of 6.8 kOe at 10 K further supports FM behavior. Density functional theory (DFT) calculations validate the stability of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small> in the ferromagnetic phase, showing that the ferromagnetic state is energetically more favorable than the antiferromagnetic state. The direct band gap of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small> was found to be approximately 1.47 eV, while the indirect band gap was around 1.04 eV. Electronic band structure and density of states calculations predict band gaps of 1.60 eV and 3.20 eV for the minority and majority spin orientations, respectively, confirming the semiconductor nature of Dy<small><sub>2</sub></small>CoMnO<small><sub>6</sub></small>. These calculated values closely match the experimentally observed band gap.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 20\",\"pages\":\" 10282-10301\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00299k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00299k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在基于氧化物的双钙钛矿受挫磁体中,涌现自由度、基态简并和竞争性磁相互作用的复杂相互作用可以产生具有前景的技术应用的奇异激发和相关量子现象。本研究考察了通过固相反应合成的Dy2CoMnO6的结构、磁性和电子性能。Rietveld细化XRD数据证实了单斜P21/n结构,拉曼光谱显示BO6多面体动力学。XPS分析表明Co和Mn的价态混合。磁性测量显示,由于Co2+ -Mn4 +超交换,在Tc = 87 K以下存在铁磁有序,在Tc (TG = 91 K)以上存在格里菲斯相,并且在低温下存在倾斜的反铁磁相关。10k时的矫顽力为6.8 kOe,进一步支持了FM行为。密度泛函理论(DFT)计算验证了Dy2CoMnO6在铁磁相中的稳定性,表明铁磁态在能量上比反铁磁态更有利。Dy2CoMnO6的直接带隙约为1.47 eV,间接带隙约为1.04 eV。电子能带结构和态密度计算预测,在少数和多数自旋取向下,带隙分别为1.60 eV和3.20 eV,证实了Dy2CoMnO6的半导体性质。这些计算值与实验观测到的带隙非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and DFT analysis of antisite disorder and Griffiths phase in Dy2CoMnO6: structural, electronic, and magnetic insights†

The intricate interaction of emergent degrees of freedom, ground state degeneracy, and competing magnetic interactions in oxide-based double perovskite frustrated magnets can give rise to exotic excitations and correlated quantum phenomena with promising technological applications. This study investigates the structural, magnetic, and electronic properties of Dy2CoMnO6 synthesized via solid-state reaction. Rietveld refinement of XRD data confirms a monoclinic P21/n structure, with Raman spectra revealing BO6 polyhedral dynamics. XPS analysis indicates mixed valence states of Co and Mn. Magnetic measurements show ferromagnetic ordering below Tc = 87 K due to Co2+–Mn4+ superexchange, along with a Griffiths phase above Tc (TG = 91 K) and canted antiferromagnetic correlations at low temperature. A coercivity of 6.8 kOe at 10 K further supports FM behavior. Density functional theory (DFT) calculations validate the stability of Dy2CoMnO6 in the ferromagnetic phase, showing that the ferromagnetic state is energetically more favorable than the antiferromagnetic state. The direct band gap of Dy2CoMnO6 was found to be approximately 1.47 eV, while the indirect band gap was around 1.04 eV. Electronic band structure and density of states calculations predict band gaps of 1.60 eV and 3.20 eV for the minority and majority spin orientations, respectively, confirming the semiconductor nature of Dy2CoMnO6. These calculated values closely match the experimentally observed band gap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信