Si-Zhe Li, Gui-Wen Huang, Na Li, Yu Liu, Yang Wang, Rui-Xiao Cao and Hong-Mei Xiao
{"title":"基于功能化棉纤维的柔性纳米发电机,用于低温环境下的能量收集","authors":"Si-Zhe Li, Gui-Wen Huang, Na Li, Yu Liu, Yang Wang, Rui-Xiao Cao and Hong-Mei Xiao","doi":"10.1039/D5TC00609K","DOIUrl":null,"url":null,"abstract":"<p >To address the challenges faced by traditional flexible triboelectric nanogenerators (F-TENGs) in low-temperature environments, such as the performance degradation of flexible conductive materials and poor fatigue resistance, this study proposes a novel low-temperature flexible triboelectric nanogenerator. By integrating a novel self-developed low-temperature flexible conductive fabric with cotton fibers and polytetrafluoroethylene (PTFE) as triboelectric materials, a high-performance F-TENG suitable for low-temperature applications was successfully developed. The experimental results demonstrate that the F-TENG maintains remarkable flexibility and mechanical properties even at 77 K. After 10 000 low-temperature flexibility tests and operational cycles, it retains excellent electrical performance, showcasing superior fatigue resistance and stable output capabilities. This work provides a novel solution to challenges in the low-temperature energy supply field and holds significant potential for applications in polar exploration, space exploration, and other cryogenic environments.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 20","pages":" 10212-10222"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flexible nanogenerator based on functionalized cotton fibers for energy harvesting in low-temperature environments†\",\"authors\":\"Si-Zhe Li, Gui-Wen Huang, Na Li, Yu Liu, Yang Wang, Rui-Xiao Cao and Hong-Mei Xiao\",\"doi\":\"10.1039/D5TC00609K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To address the challenges faced by traditional flexible triboelectric nanogenerators (F-TENGs) in low-temperature environments, such as the performance degradation of flexible conductive materials and poor fatigue resistance, this study proposes a novel low-temperature flexible triboelectric nanogenerator. By integrating a novel self-developed low-temperature flexible conductive fabric with cotton fibers and polytetrafluoroethylene (PTFE) as triboelectric materials, a high-performance F-TENG suitable for low-temperature applications was successfully developed. The experimental results demonstrate that the F-TENG maintains remarkable flexibility and mechanical properties even at 77 K. After 10 000 low-temperature flexibility tests and operational cycles, it retains excellent electrical performance, showcasing superior fatigue resistance and stable output capabilities. This work provides a novel solution to challenges in the low-temperature energy supply field and holds significant potential for applications in polar exploration, space exploration, and other cryogenic environments.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 20\",\"pages\":\" 10212-10222\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00609k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00609k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A flexible nanogenerator based on functionalized cotton fibers for energy harvesting in low-temperature environments†
To address the challenges faced by traditional flexible triboelectric nanogenerators (F-TENGs) in low-temperature environments, such as the performance degradation of flexible conductive materials and poor fatigue resistance, this study proposes a novel low-temperature flexible triboelectric nanogenerator. By integrating a novel self-developed low-temperature flexible conductive fabric with cotton fibers and polytetrafluoroethylene (PTFE) as triboelectric materials, a high-performance F-TENG suitable for low-temperature applications was successfully developed. The experimental results demonstrate that the F-TENG maintains remarkable flexibility and mechanical properties even at 77 K. After 10 000 low-temperature flexibility tests and operational cycles, it retains excellent electrical performance, showcasing superior fatigue resistance and stable output capabilities. This work provides a novel solution to challenges in the low-temperature energy supply field and holds significant potential for applications in polar exploration, space exploration, and other cryogenic environments.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors