Linghua Zeng , Juan Yang , Conghui Zhang , Junjie Zhu , Saichun Zhong , Xing Liu , Haiyu Xie , Lifeng Wang , Li Chen , Maolin Zhong , Fuzhou Hua , Weidong Liang
{"title":"Miro1:治疗神经系统疾病的潜在靶点","authors":"Linghua Zeng , Juan Yang , Conghui Zhang , Junjie Zhu , Saichun Zhong , Xing Liu , Haiyu Xie , Lifeng Wang , Li Chen , Maolin Zhong , Fuzhou Hua , Weidong Liang","doi":"10.1016/j.neuroscience.2025.05.019","DOIUrl":null,"url":null,"abstract":"<div><div>The Miro1 protein is a member of the mitochondrial Rho GTPase (Miro) protein family and plays a crucial role in regulating the dynamic processes of mitochondria and participating in cellular movement and mitochondrial transport. In the nervous system, it ensures adequate energy supply for normal neuronal function and synaptic transmission. Additionally, Miro1 actively participates in the regulation of mitochondrial quality control and stress responses within neurons. Its primary function is to sense intracellular stress signals to regulate mitochondrial movement and metabolism, thereby adapting to environmental changes. Multiple studies have indicated that the Miro1 protein is associated with the pathogenesis of various neurological disorders, such as Alzheimer’s Disease(AD), Parkinson’s Disease(PD), and Amyotrophic Lateral Sclerosis(ALS). This article reviews the mechanistic role of Miro1 in these diseases and summarizes the latest research on its involvement in neurological disorders. These efforts aim to provide unified treatment strategies for certain neurological disorders and explore the potential for treating complex neurological diseases.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"577 ","pages":"Pages 228-239"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miro1: A potential target for treating neurological disorders\",\"authors\":\"Linghua Zeng , Juan Yang , Conghui Zhang , Junjie Zhu , Saichun Zhong , Xing Liu , Haiyu Xie , Lifeng Wang , Li Chen , Maolin Zhong , Fuzhou Hua , Weidong Liang\",\"doi\":\"10.1016/j.neuroscience.2025.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Miro1 protein is a member of the mitochondrial Rho GTPase (Miro) protein family and plays a crucial role in regulating the dynamic processes of mitochondria and participating in cellular movement and mitochondrial transport. In the nervous system, it ensures adequate energy supply for normal neuronal function and synaptic transmission. Additionally, Miro1 actively participates in the regulation of mitochondrial quality control and stress responses within neurons. Its primary function is to sense intracellular stress signals to regulate mitochondrial movement and metabolism, thereby adapting to environmental changes. Multiple studies have indicated that the Miro1 protein is associated with the pathogenesis of various neurological disorders, such as Alzheimer’s Disease(AD), Parkinson’s Disease(PD), and Amyotrophic Lateral Sclerosis(ALS). This article reviews the mechanistic role of Miro1 in these diseases and summarizes the latest research on its involvement in neurological disorders. These efforts aim to provide unified treatment strategies for certain neurological disorders and explore the potential for treating complex neurological diseases.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"577 \",\"pages\":\"Pages 228-239\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452225003719\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225003719","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Miro1: A potential target for treating neurological disorders
The Miro1 protein is a member of the mitochondrial Rho GTPase (Miro) protein family and plays a crucial role in regulating the dynamic processes of mitochondria and participating in cellular movement and mitochondrial transport. In the nervous system, it ensures adequate energy supply for normal neuronal function and synaptic transmission. Additionally, Miro1 actively participates in the regulation of mitochondrial quality control and stress responses within neurons. Its primary function is to sense intracellular stress signals to regulate mitochondrial movement and metabolism, thereby adapting to environmental changes. Multiple studies have indicated that the Miro1 protein is associated with the pathogenesis of various neurological disorders, such as Alzheimer’s Disease(AD), Parkinson’s Disease(PD), and Amyotrophic Lateral Sclerosis(ALS). This article reviews the mechanistic role of Miro1 in these diseases and summarizes the latest research on its involvement in neurological disorders. These efforts aim to provide unified treatment strategies for certain neurological disorders and explore the potential for treating complex neurological diseases.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.