利用超快热动力学和猝灭开关研究反铁磁cumna中的光磁记忆效应

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jan Zubáč, Miloslav Surýnek, Kamil Olejník, Andrej Farkaš, Filip Krizek, Lukáš Nádvorník, Peter Kubaščík, Zdeněk Kašpar, František Trojánek, Richard P. Campion, Vít Novák, Petr Němec, Tomáš Jungwirth
{"title":"利用超快热动力学和猝灭开关研究反铁磁cumna中的光磁记忆效应","authors":"Jan Zubáč,&nbsp;Miloslav Surýnek,&nbsp;Kamil Olejník,&nbsp;Andrej Farkaš,&nbsp;Filip Krizek,&nbsp;Lukáš Nádvorník,&nbsp;Peter Kubaščík,&nbsp;Zdeněk Kašpar,&nbsp;František Trojánek,&nbsp;Richard P. Campion,&nbsp;Vít Novák,&nbsp;Petr Němec,&nbsp;Tomáš Jungwirth","doi":"10.1002/aelm.202400835","DOIUrl":null,"url":null,"abstract":"<p>Solving complex tasks in a modern information-driven society requires novel materials and concepts for energy-efficient hardware. Antiferromagnets offer a promising platform for seeking such approaches due to their exceptional features: low-power consumption and possible high integration density are desirable for information storage and processing or applications in unconventional computing. Among antiferromagnets, CuMnAs stands out for atomic-level scalable magnetic textures, analogue multilevel storage capability, and the magnetic state's control by a single electrical or femtosecond laser pulse. Using a pair of excitation laser pulses, this work examines functionalities of CuMnAs favorable for information processing, readily incorporating two principles of distinct characteristic timescales. Laser-induced transient heat dynamics at sub-nanosecond times represents the short-term memory and causes resistance switching due to quenching into a magnetically fragmented state. This quench switching, detectable electrically from ultrashort times to hours after writing, reminisces the long-term memory. The versatility of the principles' combination is demonstrated by antiferromagnetic in-memory operations. Temporal latency coding is utilized to encode data from a grayscale image into sub-nanosecond pulse delays. Applying input laser pulses of distinct amplitudes then allows for determining their relative order at 100-ps timescales. The results open pathways for ultrafast information processing employing antiferromagnetic memory devices.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 9","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400835","citationCount":"0","resultStr":"{\"title\":\"Investigation of Opto-magnetic Memory Effects in Antiferromagnetic CuMnAs Using Ultrafast Heat Dynamics and Quench Switching\",\"authors\":\"Jan Zubáč,&nbsp;Miloslav Surýnek,&nbsp;Kamil Olejník,&nbsp;Andrej Farkaš,&nbsp;Filip Krizek,&nbsp;Lukáš Nádvorník,&nbsp;Peter Kubaščík,&nbsp;Zdeněk Kašpar,&nbsp;František Trojánek,&nbsp;Richard P. Campion,&nbsp;Vít Novák,&nbsp;Petr Němec,&nbsp;Tomáš Jungwirth\",\"doi\":\"10.1002/aelm.202400835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solving complex tasks in a modern information-driven society requires novel materials and concepts for energy-efficient hardware. Antiferromagnets offer a promising platform for seeking such approaches due to their exceptional features: low-power consumption and possible high integration density are desirable for information storage and processing or applications in unconventional computing. Among antiferromagnets, CuMnAs stands out for atomic-level scalable magnetic textures, analogue multilevel storage capability, and the magnetic state's control by a single electrical or femtosecond laser pulse. Using a pair of excitation laser pulses, this work examines functionalities of CuMnAs favorable for information processing, readily incorporating two principles of distinct characteristic timescales. Laser-induced transient heat dynamics at sub-nanosecond times represents the short-term memory and causes resistance switching due to quenching into a magnetically fragmented state. This quench switching, detectable electrically from ultrashort times to hours after writing, reminisces the long-term memory. The versatility of the principles' combination is demonstrated by antiferromagnetic in-memory operations. Temporal latency coding is utilized to encode data from a grayscale image into sub-nanosecond pulse delays. Applying input laser pulses of distinct amplitudes then allows for determining their relative order at 100-ps timescales. The results open pathways for ultrafast information processing employing antiferromagnetic memory devices.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400835\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400835\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400835","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在现代信息驱动的社会中解决复杂的任务需要新颖的材料和节能硬件的概念。反铁磁体由于其独特的特性,为寻求这种方法提供了一个很有前途的平台:低功耗和可能的高集成密度对于信息存储和处理或非常规计算中的应用是理想的。在反铁磁体中,cumna在原子级可伸缩的磁性结构、模拟多级存储能力以及单电或飞秒激光脉冲对磁态的控制方面脱颖而出。使用一对激发激光脉冲,这项工作检查了有利于信息处理的cumna的功能,很容易结合两个不同特征时间尺度的原则。激光诱导的亚纳秒瞬态热动力学表征了短期记忆,并由于淬火成磁碎片状态而导致电阻切换。这种熄灭开关,在书写后的极短时间到数小时内都可以检测到,可以唤起长期记忆。反铁磁内存操作证明了这些原理组合的通用性。利用时间延迟编码将灰度图像中的数据编码为亚纳秒脉冲延迟。然后,应用不同振幅的输入激光脉冲,可以确定它们在100-ps时间尺度上的相对顺序。研究结果为利用反铁磁存储器件进行超快信息处理开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Opto-magnetic Memory Effects in Antiferromagnetic CuMnAs Using Ultrafast Heat Dynamics and Quench Switching

Investigation of Opto-magnetic Memory Effects in Antiferromagnetic CuMnAs Using Ultrafast Heat Dynamics and Quench Switching

Investigation of Opto-magnetic Memory Effects in Antiferromagnetic CuMnAs Using Ultrafast Heat Dynamics and Quench Switching

Solving complex tasks in a modern information-driven society requires novel materials and concepts for energy-efficient hardware. Antiferromagnets offer a promising platform for seeking such approaches due to their exceptional features: low-power consumption and possible high integration density are desirable for information storage and processing or applications in unconventional computing. Among antiferromagnets, CuMnAs stands out for atomic-level scalable magnetic textures, analogue multilevel storage capability, and the magnetic state's control by a single electrical or femtosecond laser pulse. Using a pair of excitation laser pulses, this work examines functionalities of CuMnAs favorable for information processing, readily incorporating two principles of distinct characteristic timescales. Laser-induced transient heat dynamics at sub-nanosecond times represents the short-term memory and causes resistance switching due to quenching into a magnetically fragmented state. This quench switching, detectable electrically from ultrashort times to hours after writing, reminisces the long-term memory. The versatility of the principles' combination is demonstrated by antiferromagnetic in-memory operations. Temporal latency coding is utilized to encode data from a grayscale image into sub-nanosecond pulse delays. Applying input laser pulses of distinct amplitudes then allows for determining their relative order at 100-ps timescales. The results open pathways for ultrafast information processing employing antiferromagnetic memory devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信