Yue Wang, Ping Zhou, Hongying Shan, Xiyao Liu, Ming Cheng, Zhenhong Ye, Xiunan Chen, Baoying Liao, Tianliu Peng, Chenxi Xiao, Ziying Huang, Yunshu Dong, Yang Yu, Heng Pan, Rong Li
{"title":"子宫内膜衰老伴随着H3K27ac和PGR的丢失。","authors":"Yue Wang, Ping Zhou, Hongying Shan, Xiyao Liu, Ming Cheng, Zhenhong Ye, Xiunan Chen, Baoying Liao, Tianliu Peng, Chenxi Xiao, Ziying Huang, Yunshu Dong, Yang Yu, Heng Pan, Rong Li","doi":"10.1038/s43587-025-00859-5","DOIUrl":null,"url":null,"abstract":"<p><p>Whether and how endometrial aging affects fertility remains unclear. In our in-house clinical cohort at the Center for Reproductive Medicine of Peking University Third Hospital (n = 1,149), we observed adverse pregnancy outcomes in the middle-aged group after excluding aneuploid embryos, implying the negative impact of endometrial aging on fertility. To understand endometrial aging, we performed comprehensive transcriptomic profiling of the mid-secretory endometrium of young (<35 years) and middle-aged (≥35 years) patients. This analysis revealed that H3K27ac loss is linked to impaired endometrial receptivity in the middle-aged group. We eliminated H3K27ac in young human endometrial stromal cells and observed reduced progesterone receptor (PGR), a critical regulator of endometrial receptivity. Lastly, we validated the association between H3K27ac/PGR loss and uterine aging in a mouse model. Our findings establish H3K27ac as a critical regulator of PGR and demonstrate that endometrial H3K27ac loss is associated with aging-related fertility decline. This work provides valuable insights into enhancing the safety and efficacy of assisted reproductive technologies in future clinical practices.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"5 5","pages":"816-830"},"PeriodicalIF":17.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092264/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endometrial aging is accompanied by H3K27ac and PGR loss.\",\"authors\":\"Yue Wang, Ping Zhou, Hongying Shan, Xiyao Liu, Ming Cheng, Zhenhong Ye, Xiunan Chen, Baoying Liao, Tianliu Peng, Chenxi Xiao, Ziying Huang, Yunshu Dong, Yang Yu, Heng Pan, Rong Li\",\"doi\":\"10.1038/s43587-025-00859-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whether and how endometrial aging affects fertility remains unclear. In our in-house clinical cohort at the Center for Reproductive Medicine of Peking University Third Hospital (n = 1,149), we observed adverse pregnancy outcomes in the middle-aged group after excluding aneuploid embryos, implying the negative impact of endometrial aging on fertility. To understand endometrial aging, we performed comprehensive transcriptomic profiling of the mid-secretory endometrium of young (<35 years) and middle-aged (≥35 years) patients. This analysis revealed that H3K27ac loss is linked to impaired endometrial receptivity in the middle-aged group. We eliminated H3K27ac in young human endometrial stromal cells and observed reduced progesterone receptor (PGR), a critical regulator of endometrial receptivity. Lastly, we validated the association between H3K27ac/PGR loss and uterine aging in a mouse model. Our findings establish H3K27ac as a critical regulator of PGR and demonstrate that endometrial H3K27ac loss is associated with aging-related fertility decline. This work provides valuable insights into enhancing the safety and efficacy of assisted reproductive technologies in future clinical practices.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"5 5\",\"pages\":\"816-830\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-025-00859-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00859-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Endometrial aging is accompanied by H3K27ac and PGR loss.
Whether and how endometrial aging affects fertility remains unclear. In our in-house clinical cohort at the Center for Reproductive Medicine of Peking University Third Hospital (n = 1,149), we observed adverse pregnancy outcomes in the middle-aged group after excluding aneuploid embryos, implying the negative impact of endometrial aging on fertility. To understand endometrial aging, we performed comprehensive transcriptomic profiling of the mid-secretory endometrium of young (<35 years) and middle-aged (≥35 years) patients. This analysis revealed that H3K27ac loss is linked to impaired endometrial receptivity in the middle-aged group. We eliminated H3K27ac in young human endometrial stromal cells and observed reduced progesterone receptor (PGR), a critical regulator of endometrial receptivity. Lastly, we validated the association between H3K27ac/PGR loss and uterine aging in a mouse model. Our findings establish H3K27ac as a critical regulator of PGR and demonstrate that endometrial H3K27ac loss is associated with aging-related fertility decline. This work provides valuable insights into enhancing the safety and efficacy of assisted reproductive technologies in future clinical practices.