大规模血浆蛋白质组分析揭示了阿尔茨海默病的诊断生物标志物和途径。

IF 17 Q1 CELL BIOLOGY
Nature aging Pub Date : 2025-06-01 Epub Date: 2025-05-20 DOI:10.1038/s43587-025-00872-8
Gyujin Heo, Ying Xu, Erming Wang, Muhammad Ali, Hamilton Se-Hwee Oh, Patricia Moran-Losada, Federica Anastasi, Armand González Escalante, Raquel Puerta, Soomin Song, Jigyasha Timsina, Menghan Liu, Daniel Western, Katherine Gong, Yike Chen, Pat Kohlfeld, Allison Flynn, Alvin G Thomas, Joseph Lowery, John C Morris, David M Holtzman, Joel S Perlmutter, Suzanne E Schindler, Natalia Vilor-Tejedor, Marc Suárez-Calvet, Pablo García-González, Marta Marquié, Maria Victoria Fernández, Mercè Boada, Amanda Cano, Agustín Ruiz, Bin Zhang, David A Bennett, Tammie Benzinger, Tony Wyss-Coray, Laura Ibanez, Yun Ju Sung, Carlos Cruchaga
{"title":"大规模血浆蛋白质组分析揭示了阿尔茨海默病的诊断生物标志物和途径。","authors":"Gyujin Heo, Ying Xu, Erming Wang, Muhammad Ali, Hamilton Se-Hwee Oh, Patricia Moran-Losada, Federica Anastasi, Armand González Escalante, Raquel Puerta, Soomin Song, Jigyasha Timsina, Menghan Liu, Daniel Western, Katherine Gong, Yike Chen, Pat Kohlfeld, Allison Flynn, Alvin G Thomas, Joseph Lowery, John C Morris, David M Holtzman, Joel S Perlmutter, Suzanne E Schindler, Natalia Vilor-Tejedor, Marc Suárez-Calvet, Pablo García-González, Marta Marquié, Maria Victoria Fernández, Mercè Boada, Amanda Cano, Agustín Ruiz, Bin Zhang, David A Bennett, Tammie Benzinger, Tony Wyss-Coray, Laura Ibanez, Yun Ju Sung, Carlos Cruchaga","doi":"10.1038/s43587-025-00872-8","DOIUrl":null,"url":null,"abstract":"<p><p>Proteomic studies have been instrumental in identifying brain, cerebrospinal fluid and plasma proteins associated with Alzheimer's disease (AD). Here, we comprehensively examined 6,905 aptamers corresponding to 6,106 unique proteins in plasma in more than 3,300 well-characterized individuals to identify new proteins, pathways and predictive models for AD. We identified 416 proteins (294 new) associated with clinical AD status and validated the findings in two external datasets representing more than 7,000 samples. AD-related proteins reflected blood-brain barrier disruption and other processes implicated in AD, such as lipid dysregulation or immune responses. A machine learning model was used to identify a set of seven proteins that were highly predictive of both clinical AD (area under the curve (AUC) of >0.72) and biomarker-defined AD status (AUC of >0.88), which were replicated in multiple external cohorts and orthogonal platforms. These findings underscore the potential of using plasma proteins as biomarkers for the early detection and monitoring of AD and for guiding treatment decisions.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":"1114-1131"},"PeriodicalIF":17.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale plasma proteomic profiling unveils diagnostic biomarkers and pathways for Alzheimer's disease.\",\"authors\":\"Gyujin Heo, Ying Xu, Erming Wang, Muhammad Ali, Hamilton Se-Hwee Oh, Patricia Moran-Losada, Federica Anastasi, Armand González Escalante, Raquel Puerta, Soomin Song, Jigyasha Timsina, Menghan Liu, Daniel Western, Katherine Gong, Yike Chen, Pat Kohlfeld, Allison Flynn, Alvin G Thomas, Joseph Lowery, John C Morris, David M Holtzman, Joel S Perlmutter, Suzanne E Schindler, Natalia Vilor-Tejedor, Marc Suárez-Calvet, Pablo García-González, Marta Marquié, Maria Victoria Fernández, Mercè Boada, Amanda Cano, Agustín Ruiz, Bin Zhang, David A Bennett, Tammie Benzinger, Tony Wyss-Coray, Laura Ibanez, Yun Ju Sung, Carlos Cruchaga\",\"doi\":\"10.1038/s43587-025-00872-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteomic studies have been instrumental in identifying brain, cerebrospinal fluid and plasma proteins associated with Alzheimer's disease (AD). Here, we comprehensively examined 6,905 aptamers corresponding to 6,106 unique proteins in plasma in more than 3,300 well-characterized individuals to identify new proteins, pathways and predictive models for AD. We identified 416 proteins (294 new) associated with clinical AD status and validated the findings in two external datasets representing more than 7,000 samples. AD-related proteins reflected blood-brain barrier disruption and other processes implicated in AD, such as lipid dysregulation or immune responses. A machine learning model was used to identify a set of seven proteins that were highly predictive of both clinical AD (area under the curve (AUC) of >0.72) and biomarker-defined AD status (AUC of >0.88), which were replicated in multiple external cohorts and orthogonal platforms. These findings underscore the potential of using plasma proteins as biomarkers for the early detection and monitoring of AD and for guiding treatment decisions.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\" \",\"pages\":\"1114-1131\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-025-00872-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00872-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质组学研究有助于识别与阿尔茨海默病(AD)相关的脑、脑脊液和血浆蛋白。在这里,我们全面检查了3300多名具有良好特征的个体血浆中6106种独特蛋白质的6905个适体,以确定阿尔茨海默病的新蛋白质、途径和预测模型。我们确定了416种与临床AD状态相关的蛋白(294种新蛋白),并在两个外部数据集中验证了这些发现,这些数据集代表了7000多个样本。AD相关蛋白反映了与AD相关的血脑屏障破坏和其他过程,如脂质失调或免疫反应。研究人员使用机器学习模型来鉴定7种蛋白质,这些蛋白质对临床AD(曲线下面积(AUC)为>0.72)和生物标志物定义的AD状态(AUC为>0.88)都有很高的预测作用,这些蛋白质在多个外部队列和正交平台中得到了重复。这些发现强调了使用血浆蛋白作为AD早期检测和监测的生物标志物以及指导治疗决策的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale plasma proteomic profiling unveils diagnostic biomarkers and pathways for Alzheimer's disease.

Proteomic studies have been instrumental in identifying brain, cerebrospinal fluid and plasma proteins associated with Alzheimer's disease (AD). Here, we comprehensively examined 6,905 aptamers corresponding to 6,106 unique proteins in plasma in more than 3,300 well-characterized individuals to identify new proteins, pathways and predictive models for AD. We identified 416 proteins (294 new) associated with clinical AD status and validated the findings in two external datasets representing more than 7,000 samples. AD-related proteins reflected blood-brain barrier disruption and other processes implicated in AD, such as lipid dysregulation or immune responses. A machine learning model was used to identify a set of seven proteins that were highly predictive of both clinical AD (area under the curve (AUC) of >0.72) and biomarker-defined AD status (AUC of >0.88), which were replicated in multiple external cohorts and orthogonal platforms. These findings underscore the potential of using plasma proteins as biomarkers for the early detection and monitoring of AD and for guiding treatment decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信