利用基因表达数据进行癌症预测的改进量子扩展卷积神经网络。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Magendiran N, Karthik R, Dhanalakshmi V, Sangeetha S
{"title":"利用基因表达数据进行癌症预测的改进量子扩展卷积神经网络。","authors":"Magendiran N, Karthik R, Dhanalakshmi V, Sangeetha S","doi":"10.1080/10255842.2025.2502816","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a modified Quantum Dilated Convolutional neural network (QDCNN) to detect cancer using gene expression data. Primarily, the input gene expression data is taken from a specified dataset. Then, data transformation is done using Adaptive Box-Cox transformation and feature fusion is done by a Deep Neural Network (DNN) with Kulczynski. The refined features are then fed into the modified QDCNN, which effectively predicts cancer. The modified QDCNN attains an accuracy of 90.6%, a True Positive Rate (TPR) of 89.0%, False Negative Rate (FNR) of 0.109, and a Matthews correlation coefficient (MCC) of 89.9% when using the PANCAN dataset.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-13"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified quantum dilated convolutional neural network for cancer prediction using gene expression data.\",\"authors\":\"Magendiran N, Karthik R, Dhanalakshmi V, Sangeetha S\",\"doi\":\"10.1080/10255842.2025.2502816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a modified Quantum Dilated Convolutional neural network (QDCNN) to detect cancer using gene expression data. Primarily, the input gene expression data is taken from a specified dataset. Then, data transformation is done using Adaptive Box-Cox transformation and feature fusion is done by a Deep Neural Network (DNN) with Kulczynski. The refined features are then fed into the modified QDCNN, which effectively predicts cancer. The modified QDCNN attains an accuracy of 90.6%, a True Positive Rate (TPR) of 89.0%, False Negative Rate (FNR) of 0.109, and a Matthews correlation coefficient (MCC) of 89.9% when using the PANCAN dataset.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2502816\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2502816","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的量子扩展卷积神经网络(QDCNN),利用基因表达数据检测癌症。首先,输入的基因表达数据是从指定的数据集中获取的。然后,使用自适应Box-Cox变换进行数据转换,并使用Kulczynski深度神经网络(DNN)进行特征融合。这些改进后的特征被输入到改进后的QDCNN中,从而有效地预测癌症。改进后的QDCNN在使用PANCAN数据集时,准确率为90.6%,真阳性率(TPR)为89.0%,假阴性率(FNR)为0.109,马修斯相关系数(MCC)为89.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified quantum dilated convolutional neural network for cancer prediction using gene expression data.

This paper proposes a modified Quantum Dilated Convolutional neural network (QDCNN) to detect cancer using gene expression data. Primarily, the input gene expression data is taken from a specified dataset. Then, data transformation is done using Adaptive Box-Cox transformation and feature fusion is done by a Deep Neural Network (DNN) with Kulczynski. The refined features are then fed into the modified QDCNN, which effectively predicts cancer. The modified QDCNN attains an accuracy of 90.6%, a True Positive Rate (TPR) of 89.0%, False Negative Rate (FNR) of 0.109, and a Matthews correlation coefficient (MCC) of 89.9% when using the PANCAN dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信