Katrina E. Deane , Devin K. Binder , Khaleel A. Razak
{"title":"脆性X综合征小鼠模型听觉反应中的皮层层特异性异常。","authors":"Katrina E. Deane , Devin K. Binder , Khaleel A. Razak","doi":"10.1016/j.nbd.2025.106963","DOIUrl":null,"url":null,"abstract":"<div><div>Fragile X Syndrome (FXS) is a leading genetic cause of autism spectrum disorders (ASD)- associated behaviors, including sensory processing deficits. Sensory sensitivity and temporal processing deficits in the auditory domain will affect development of language and cognitive functions. The mouse model for FXS, <em>Fmr1</em> KO, has shown remarkably similar auditory processing phenotypes to patients with FXS. In vitro cortical slice recordings show layer-specific differences in <em>Fmr1</em> KO mouse local circuits, but it is unclear how these differences translate to changes in sensory processing. In this study, we used a depth multielectrode to record in vivo spikes and local field potentials across layers of the auditory cortex in <em>Fmr1</em> KO and wildtype mice (WT), converting the latter to current source density (CSD) profiles for improved spatial resolution analysis. We observed reduced CSD sink amplitudes and inter-trial phase coherence, and an increase in trial-to-trial variability for temporally modulated stimuli in the KO mice. Results indicated a differential cortical layer pattern of activity in KO mice, with higher baseline gamma power in superficial and deep layers and higher resting delta and theta power in granular layers. Significantly elevated inter-trial variability was observed for CSD and spikes in KO mice. Auditory steady state responses to clicks or gaps at 40 Hz showed considerable trial-to-trial variability in a layer-specific manner in KO mice. Neural generators in the <em>Fmr1</em> KO mouse auditory cortex failed to detect short gaps in noise, indicating severe temporal processing deficits. Altogether, this study indicates layer-specific cortical mechanisms of sensory hypersensitivity and temporal processing deficits in FXS.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"212 ","pages":"Article 106963"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cortical layer-specific abnormalities in auditory responses in a mouse model of Fragile X Syndrome\",\"authors\":\"Katrina E. Deane , Devin K. Binder , Khaleel A. Razak\",\"doi\":\"10.1016/j.nbd.2025.106963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fragile X Syndrome (FXS) is a leading genetic cause of autism spectrum disorders (ASD)- associated behaviors, including sensory processing deficits. Sensory sensitivity and temporal processing deficits in the auditory domain will affect development of language and cognitive functions. The mouse model for FXS, <em>Fmr1</em> KO, has shown remarkably similar auditory processing phenotypes to patients with FXS. In vitro cortical slice recordings show layer-specific differences in <em>Fmr1</em> KO mouse local circuits, but it is unclear how these differences translate to changes in sensory processing. In this study, we used a depth multielectrode to record in vivo spikes and local field potentials across layers of the auditory cortex in <em>Fmr1</em> KO and wildtype mice (WT), converting the latter to current source density (CSD) profiles for improved spatial resolution analysis. We observed reduced CSD sink amplitudes and inter-trial phase coherence, and an increase in trial-to-trial variability for temporally modulated stimuli in the KO mice. Results indicated a differential cortical layer pattern of activity in KO mice, with higher baseline gamma power in superficial and deep layers and higher resting delta and theta power in granular layers. Significantly elevated inter-trial variability was observed for CSD and spikes in KO mice. Auditory steady state responses to clicks or gaps at 40 Hz showed considerable trial-to-trial variability in a layer-specific manner in KO mice. Neural generators in the <em>Fmr1</em> KO mouse auditory cortex failed to detect short gaps in noise, indicating severe temporal processing deficits. Altogether, this study indicates layer-specific cortical mechanisms of sensory hypersensitivity and temporal processing deficits in FXS.</div></div>\",\"PeriodicalId\":19097,\"journal\":{\"name\":\"Neurobiology of Disease\",\"volume\":\"212 \",\"pages\":\"Article 106963\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969996125001792\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125001792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Cortical layer-specific abnormalities in auditory responses in a mouse model of Fragile X Syndrome
Fragile X Syndrome (FXS) is a leading genetic cause of autism spectrum disorders (ASD)- associated behaviors, including sensory processing deficits. Sensory sensitivity and temporal processing deficits in the auditory domain will affect development of language and cognitive functions. The mouse model for FXS, Fmr1 KO, has shown remarkably similar auditory processing phenotypes to patients with FXS. In vitro cortical slice recordings show layer-specific differences in Fmr1 KO mouse local circuits, but it is unclear how these differences translate to changes in sensory processing. In this study, we used a depth multielectrode to record in vivo spikes and local field potentials across layers of the auditory cortex in Fmr1 KO and wildtype mice (WT), converting the latter to current source density (CSD) profiles for improved spatial resolution analysis. We observed reduced CSD sink amplitudes and inter-trial phase coherence, and an increase in trial-to-trial variability for temporally modulated stimuli in the KO mice. Results indicated a differential cortical layer pattern of activity in KO mice, with higher baseline gamma power in superficial and deep layers and higher resting delta and theta power in granular layers. Significantly elevated inter-trial variability was observed for CSD and spikes in KO mice. Auditory steady state responses to clicks or gaps at 40 Hz showed considerable trial-to-trial variability in a layer-specific manner in KO mice. Neural generators in the Fmr1 KO mouse auditory cortex failed to detect short gaps in noise, indicating severe temporal processing deficits. Altogether, this study indicates layer-specific cortical mechanisms of sensory hypersensitivity and temporal processing deficits in FXS.
期刊介绍:
Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.