Domenic Bersch, Martina G Vilas, Sari Saba-Sadiya, Timothy Schaumlöffel, Kshitij Dwivedi, Christina Sartzetaki, Radoslaw M Cichy, Gemma Roig
{"title":"Net2Brain:一个将人工视觉模型与人脑反应进行比较的工具箱。","authors":"Domenic Bersch, Martina G Vilas, Sari Saba-Sadiya, Timothy Schaumlöffel, Kshitij Dwivedi, Christina Sartzetaki, Radoslaw M Cichy, Gemma Roig","doi":"10.3389/fninf.2025.1515873","DOIUrl":null,"url":null,"abstract":"<p><p>In cognitive neuroscience, the integration of deep neural networks (DNNs) with traditional neuroscientific analyses has significantly advanced our understanding of both biological neural processes and the functioning of DNNs. However, challenges remain in effectively comparing the representational spaces of artificial models and brain data, particularly due to the growing variety of models and the specific demands of neuroimaging research. To address these challenges, we present Net2Brain, a Python-based toolbox that provides an end-to-end pipeline for incorporating DNNs into neuroscience research, encompassing dataset download, a large selection of models, feature extraction, evaluation, and visualization. Net2Brain provides functionalities in four key areas. First, it offers access to over 600 DNNs trained on diverse tasks across multiple modalities, including vision, language, audio, and multimodal data, organized through a carefully structured taxonomy. Second, it provides a streamlined API for downloading and handling popular neuroscience datasets, such as the NSD and THINGS dataset, allowing researchers to easily access corresponding brain data. Third, Net2Brain facilitates a wide range of analysis options, including feature extraction, representational similarity analysis (RSA), and linear encoding, while also supporting advanced techniques like variance partitioning and searchlight analysis. Finally, the toolbox integrates seamlessly with other established open source libraries, enhancing interoperability and promoting collaborative research. By simplifying model selection, data processing, and evaluation, Net2Brain empowers researchers to conduct more robust, flexible, and reproducible investigations of the relationships between artificial and biological neural representations.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1515873"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089098/pdf/","citationCount":"0","resultStr":"{\"title\":\"Net2Brain: a toolbox to compare artificial vision models with human brain responses.\",\"authors\":\"Domenic Bersch, Martina G Vilas, Sari Saba-Sadiya, Timothy Schaumlöffel, Kshitij Dwivedi, Christina Sartzetaki, Radoslaw M Cichy, Gemma Roig\",\"doi\":\"10.3389/fninf.2025.1515873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cognitive neuroscience, the integration of deep neural networks (DNNs) with traditional neuroscientific analyses has significantly advanced our understanding of both biological neural processes and the functioning of DNNs. However, challenges remain in effectively comparing the representational spaces of artificial models and brain data, particularly due to the growing variety of models and the specific demands of neuroimaging research. To address these challenges, we present Net2Brain, a Python-based toolbox that provides an end-to-end pipeline for incorporating DNNs into neuroscience research, encompassing dataset download, a large selection of models, feature extraction, evaluation, and visualization. Net2Brain provides functionalities in four key areas. First, it offers access to over 600 DNNs trained on diverse tasks across multiple modalities, including vision, language, audio, and multimodal data, organized through a carefully structured taxonomy. Second, it provides a streamlined API for downloading and handling popular neuroscience datasets, such as the NSD and THINGS dataset, allowing researchers to easily access corresponding brain data. Third, Net2Brain facilitates a wide range of analysis options, including feature extraction, representational similarity analysis (RSA), and linear encoding, while also supporting advanced techniques like variance partitioning and searchlight analysis. Finally, the toolbox integrates seamlessly with other established open source libraries, enhancing interoperability and promoting collaborative research. By simplifying model selection, data processing, and evaluation, Net2Brain empowers researchers to conduct more robust, flexible, and reproducible investigations of the relationships between artificial and biological neural representations.</p>\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"19 \",\"pages\":\"1515873\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089098/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2025.1515873\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1515873","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Net2Brain: a toolbox to compare artificial vision models with human brain responses.
In cognitive neuroscience, the integration of deep neural networks (DNNs) with traditional neuroscientific analyses has significantly advanced our understanding of both biological neural processes and the functioning of DNNs. However, challenges remain in effectively comparing the representational spaces of artificial models and brain data, particularly due to the growing variety of models and the specific demands of neuroimaging research. To address these challenges, we present Net2Brain, a Python-based toolbox that provides an end-to-end pipeline for incorporating DNNs into neuroscience research, encompassing dataset download, a large selection of models, feature extraction, evaluation, and visualization. Net2Brain provides functionalities in four key areas. First, it offers access to over 600 DNNs trained on diverse tasks across multiple modalities, including vision, language, audio, and multimodal data, organized through a carefully structured taxonomy. Second, it provides a streamlined API for downloading and handling popular neuroscience datasets, such as the NSD and THINGS dataset, allowing researchers to easily access corresponding brain data. Third, Net2Brain facilitates a wide range of analysis options, including feature extraction, representational similarity analysis (RSA), and linear encoding, while also supporting advanced techniques like variance partitioning and searchlight analysis. Finally, the toolbox integrates seamlessly with other established open source libraries, enhancing interoperability and promoting collaborative research. By simplifying model selection, data processing, and evaluation, Net2Brain empowers researchers to conduct more robust, flexible, and reproducible investigations of the relationships between artificial and biological neural representations.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.