基于二维SWD-MF-DFA的脑mri分类

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Jing Wang , Xinpei Wu , Haozhe Wang , Jian Wang
{"title":"基于二维SWD-MF-DFA的脑mri分类","authors":"Jing Wang ,&nbsp;Xinpei Wu ,&nbsp;Haozhe Wang ,&nbsp;Jian Wang","doi":"10.1016/j.jneumeth.2025.110468","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>To improve imaging classification accuracy, we modify the traditional 2D multifractal trend fluctuation analysis (MF-DFA) method to better preserve local feature values. Inspired by MF-DFA, we develop a novel method for extracting eigenvalues, enhancing the precision of imaging analysis.</div></div><div><h3>New method:</h3><div>In this paper, we propose an enhanced algorithm building upon the traditional 2D MF-DFA. Our approach introduces a 2D sliding window (SWD) technique for feature value extraction. Initially, the local generalized Hurst index of the imaging is derived using the SWD algorithm, based on MF-DFA principles. Subsequently, the generalized Hurst index is recalculated for the digital matrix formed by these local Hurst indexes. These vectors are then input into a support vector machine (SVM) for classification. This methodology seeks to refine the traditional 2D MF-DFA by more effectively preserving local feature values in imaging.</div></div><div><h3>Results:</h3><div>The classification accuracy of the SWD eigenvalue extraction method based on 2D MF-DFA reaches 91.54%.</div></div><div><h3>Comparison with existing methods:</h3><div>We employ brain magnetic resonance imaging (MRI) data sets to evaluate the efficacy of both the conventional 2D MF-DFA method and our proposed feature value extraction technique. Both methods are applied alongside a SVM for classification. The findings reveal that the conventional 2D MF-DFA method yields a classification accuracy of 59.40%, while our SWD feature value extraction method attains a classification accuracy of 91.54%.</div></div><div><h3>Conclusion:</h3><div>This substantial performance enhancement underscores the superiority of the SWD approach over the conventional method.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"421 ","pages":"Article 110468"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain MRIs classification based on 2D SWD-MF-DFA\",\"authors\":\"Jing Wang ,&nbsp;Xinpei Wu ,&nbsp;Haozhe Wang ,&nbsp;Jian Wang\",\"doi\":\"10.1016/j.jneumeth.2025.110468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><div>To improve imaging classification accuracy, we modify the traditional 2D multifractal trend fluctuation analysis (MF-DFA) method to better preserve local feature values. Inspired by MF-DFA, we develop a novel method for extracting eigenvalues, enhancing the precision of imaging analysis.</div></div><div><h3>New method:</h3><div>In this paper, we propose an enhanced algorithm building upon the traditional 2D MF-DFA. Our approach introduces a 2D sliding window (SWD) technique for feature value extraction. Initially, the local generalized Hurst index of the imaging is derived using the SWD algorithm, based on MF-DFA principles. Subsequently, the generalized Hurst index is recalculated for the digital matrix formed by these local Hurst indexes. These vectors are then input into a support vector machine (SVM) for classification. This methodology seeks to refine the traditional 2D MF-DFA by more effectively preserving local feature values in imaging.</div></div><div><h3>Results:</h3><div>The classification accuracy of the SWD eigenvalue extraction method based on 2D MF-DFA reaches 91.54%.</div></div><div><h3>Comparison with existing methods:</h3><div>We employ brain magnetic resonance imaging (MRI) data sets to evaluate the efficacy of both the conventional 2D MF-DFA method and our proposed feature value extraction technique. Both methods are applied alongside a SVM for classification. The findings reveal that the conventional 2D MF-DFA method yields a classification accuracy of 59.40%, while our SWD feature value extraction method attains a classification accuracy of 91.54%.</div></div><div><h3>Conclusion:</h3><div>This substantial performance enhancement underscores the superiority of the SWD approach over the conventional method.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"421 \",\"pages\":\"Article 110468\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025001098\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025001098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:为了提高图像分类精度,对传统的二维多重分形趋势波动分析(MF-DFA)方法进行了改进,以更好地保留局部特征值。受MF-DFA的启发,我们开发了一种新的特征值提取方法,提高了成像分析的精度。新方法:本文在传统二维MF-DFA的基础上提出了一种增强算法。我们的方法引入了一种二维滑动窗口(SWD)技术来提取特征值。首先,基于MF-DFA原理,利用SWD算法推导出图像的局部广义Hurst指数。然后,对这些局部赫斯特指数构成的数字矩阵重新计算广义赫斯特指数。然后将这些向量输入到支持向量机(SVM)中进行分类。该方法旨在通过更有效地保留成像中的局部特征值来改进传统的二维MF-DFA。结果:基于二维MF-DFA的SWD特征值提取方法分类准确率达到91.54%。与现有方法的比较:我们使用脑磁共振成像(MRI)数据集来评估传统的二维MF-DFA方法和我们提出的特征值提取技术的有效性。这两种方法都与支持向量机一起用于分类。结果表明,传统二维MF-DFA方法的分类准确率为59.40%,而我们的SWD特征值提取方法的分类准确率为91.54%。结论:这一显著的性能提升凸显了SWD方法相对于传统方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain MRIs classification based on 2D SWD-MF-DFA

Background:

To improve imaging classification accuracy, we modify the traditional 2D multifractal trend fluctuation analysis (MF-DFA) method to better preserve local feature values. Inspired by MF-DFA, we develop a novel method for extracting eigenvalues, enhancing the precision of imaging analysis.

New method:

In this paper, we propose an enhanced algorithm building upon the traditional 2D MF-DFA. Our approach introduces a 2D sliding window (SWD) technique for feature value extraction. Initially, the local generalized Hurst index of the imaging is derived using the SWD algorithm, based on MF-DFA principles. Subsequently, the generalized Hurst index is recalculated for the digital matrix formed by these local Hurst indexes. These vectors are then input into a support vector machine (SVM) for classification. This methodology seeks to refine the traditional 2D MF-DFA by more effectively preserving local feature values in imaging.

Results:

The classification accuracy of the SWD eigenvalue extraction method based on 2D MF-DFA reaches 91.54%.

Comparison with existing methods:

We employ brain magnetic resonance imaging (MRI) data sets to evaluate the efficacy of both the conventional 2D MF-DFA method and our proposed feature value extraction technique. Both methods are applied alongside a SVM for classification. The findings reveal that the conventional 2D MF-DFA method yields a classification accuracy of 59.40%, while our SWD feature value extraction method attains a classification accuracy of 91.54%.

Conclusion:

This substantial performance enhancement underscores the superiority of the SWD approach over the conventional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信