用于功能性免疫细胞疗法微尺度生产的数字微流控平台。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Analytical Chemistry Pub Date : 2025-06-03 Epub Date: 2025-05-19 DOI:10.1021/acs.analchem.4c06911
Samuel R Little, Niloufar Rahbari, Mehri Hajiaghayi, Fatemeh Gholizadeh, Fanny-Mei Cloarec-Ung, Joel Phillips, Hugo Sinha, Alison Hirukawa, David J H F Knapp, Peter J Darlington, Steve C C Shih
{"title":"用于功能性免疫细胞疗法微尺度生产的数字微流控平台。","authors":"Samuel R Little, Niloufar Rahbari, Mehri Hajiaghayi, Fatemeh Gholizadeh, Fanny-Mei Cloarec-Ung, Joel Phillips, Hugo Sinha, Alison Hirukawa, David J H F Knapp, Peter J Darlington, Steve C C Shih","doi":"10.1021/acs.analchem.4c06911","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically engineering human immune cells has been shown to be an effective approach for developing novel cellular therapies to treat a wide range of diseases. To expand the scope of these cellular therapies while solving persistent challenges, extensive research and development is still required. Here we use a digital microfluidic enabled electroporation system (referred to as triDrop) specifically designed to mitigate harm during electroporation procedures and compare against two state-of-the-art commercially available systems for the engineering of primary human T cells. We describe the ability to use triDrop for highly efficient transfection with minimal reagent consumption while preserving a healthy transcriptomic profile. Finally, we show for the first time the ability to use a digital microfluidic platform for the miniaturized production of Chimeric Antigen Receptor (CAR) T cell therapies demonstrating how this novel system can lead to a 2-fold improvement in immunotherapeutic functionality compared to gold standard methods while providing up to a 20-fold reduction in cost. These results highlight the potential power of this system for automated, rapid, and affordable next-generation cell therapy R&D.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":"11026-11034"},"PeriodicalIF":6.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Digital Microfluidic Platform for the Microscale Production of Functional Immune Cell Therapies.\",\"authors\":\"Samuel R Little, Niloufar Rahbari, Mehri Hajiaghayi, Fatemeh Gholizadeh, Fanny-Mei Cloarec-Ung, Joel Phillips, Hugo Sinha, Alison Hirukawa, David J H F Knapp, Peter J Darlington, Steve C C Shih\",\"doi\":\"10.1021/acs.analchem.4c06911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetically engineering human immune cells has been shown to be an effective approach for developing novel cellular therapies to treat a wide range of diseases. To expand the scope of these cellular therapies while solving persistent challenges, extensive research and development is still required. Here we use a digital microfluidic enabled electroporation system (referred to as triDrop) specifically designed to mitigate harm during electroporation procedures and compare against two state-of-the-art commercially available systems for the engineering of primary human T cells. We describe the ability to use triDrop for highly efficient transfection with minimal reagent consumption while preserving a healthy transcriptomic profile. Finally, we show for the first time the ability to use a digital microfluidic platform for the miniaturized production of Chimeric Antigen Receptor (CAR) T cell therapies demonstrating how this novel system can lead to a 2-fold improvement in immunotherapeutic functionality compared to gold standard methods while providing up to a 20-fold reduction in cost. These results highlight the potential power of this system for automated, rapid, and affordable next-generation cell therapy R&D.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"11026-11034\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06911\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06911","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

基因工程人类免疫细胞已被证明是开发新型细胞疗法来治疗多种疾病的有效方法。为了扩大这些细胞疗法的范围,同时解决持续存在的挑战,仍然需要广泛的研究和开发。在这里,我们使用了一种数字微流体驱动的电穿孔系统(称为triDrop),专门设计用于减轻电穿孔过程中的伤害,并与两种最先进的商用系统进行比较,用于人类原代T细胞的工程。我们描述了使用triddrop以最小的试剂消耗进行高效转染的能力,同时保留了健康的转录组谱。最后,我们首次展示了使用数字微流控平台小型化生产嵌合抗原受体(CAR) T细胞疗法的能力,展示了与金标准方法相比,这种新系统如何导致免疫治疗功能的2倍改善,同时提供高达20倍的成本降低。这些结果突出了该系统在自动化、快速和负担得起的下一代细胞治疗研发方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Digital Microfluidic Platform for the Microscale Production of Functional Immune Cell Therapies.

A Digital Microfluidic Platform for the Microscale Production of Functional Immune Cell Therapies.

Genetically engineering human immune cells has been shown to be an effective approach for developing novel cellular therapies to treat a wide range of diseases. To expand the scope of these cellular therapies while solving persistent challenges, extensive research and development is still required. Here we use a digital microfluidic enabled electroporation system (referred to as triDrop) specifically designed to mitigate harm during electroporation procedures and compare against two state-of-the-art commercially available systems for the engineering of primary human T cells. We describe the ability to use triDrop for highly efficient transfection with minimal reagent consumption while preserving a healthy transcriptomic profile. Finally, we show for the first time the ability to use a digital microfluidic platform for the miniaturized production of Chimeric Antigen Receptor (CAR) T cell therapies demonstrating how this novel system can lead to a 2-fold improvement in immunotherapeutic functionality compared to gold standard methods while providing up to a 20-fold reduction in cost. These results highlight the potential power of this system for automated, rapid, and affordable next-generation cell therapy R&D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信