Ermei Lu , Jie Chen , Qiaoyun Wu , Jiayu Wu , Kecheng Zhou
{"title":"与lnncgm36介导的COP1上调相关的神经炎症和脑缺血损伤的改善。","authors":"Ermei Lu , Jie Chen , Qiaoyun Wu , Jiayu Wu , Kecheng Zhou","doi":"10.1016/j.neuroscience.2025.05.023","DOIUrl":null,"url":null,"abstract":"<div><div>Schaftoside(SS), a bioactive compound derived from<!--> <!-->Herba Desmodii Styracifolii, has demonstrated anti-inflammatory properties in microglial cells; However, its role in ischemic brain injury in mice remains unclear. This study aimed to investigate the neuroprotective effects of schaftoside in a mouse model of middle cerebral artery occlusion (MCAO) and elucidate the underlying molecular mechanism. RNA sequencing revealed that schaftoside significantly upregulated the long noncoding RNA Gm32496 (LncGm36), which was prominently downregulated in the ischemic penumbra of MCAO mice. Administration of schaftoside reduced the infarct size, alleviated brain edema, and improved neurological outcomes in MCAO mice through LncGm36 upregulation. Mechanistically, schaftoside-induced LncGm36 expression was accompanied by elevated levels of COP1, a key regulator involved in neuroinflammation. RNA pull-down assays confirmed a direct interaction between LncGm36 and COP1. Silencing of either LncGm36 or COP1 attenuated schaftoside-mediated anti-inflammatory microglial polarization and neuroprotection. Collectively, these results indicate that schaftoside confers neuroprotection against ischemic brain injury by promoting an anti-inflammatory phenotypic shift of microglia through the LncGm36/COP1 pathway, suggesting its potential as a therapeutic agent for ischemic stroke.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"579 ","pages":"Pages 93-104"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schaftoside restrains neuroinflammation and ameliorates cerebral ischemic injury associated with LncGm36 mediated COP1 upregulation\",\"authors\":\"Ermei Lu , Jie Chen , Qiaoyun Wu , Jiayu Wu , Kecheng Zhou\",\"doi\":\"10.1016/j.neuroscience.2025.05.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Schaftoside(SS), a bioactive compound derived from<!--> <!-->Herba Desmodii Styracifolii, has demonstrated anti-inflammatory properties in microglial cells; However, its role in ischemic brain injury in mice remains unclear. This study aimed to investigate the neuroprotective effects of schaftoside in a mouse model of middle cerebral artery occlusion (MCAO) and elucidate the underlying molecular mechanism. RNA sequencing revealed that schaftoside significantly upregulated the long noncoding RNA Gm32496 (LncGm36), which was prominently downregulated in the ischemic penumbra of MCAO mice. Administration of schaftoside reduced the infarct size, alleviated brain edema, and improved neurological outcomes in MCAO mice through LncGm36 upregulation. Mechanistically, schaftoside-induced LncGm36 expression was accompanied by elevated levels of COP1, a key regulator involved in neuroinflammation. RNA pull-down assays confirmed a direct interaction between LncGm36 and COP1. Silencing of either LncGm36 or COP1 attenuated schaftoside-mediated anti-inflammatory microglial polarization and neuroprotection. Collectively, these results indicate that schaftoside confers neuroprotection against ischemic brain injury by promoting an anti-inflammatory phenotypic shift of microglia through the LncGm36/COP1 pathway, suggesting its potential as a therapeutic agent for ischemic stroke.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"579 \",\"pages\":\"Pages 93-104\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452225003859\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225003859","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Schaftoside restrains neuroinflammation and ameliorates cerebral ischemic injury associated with LncGm36 mediated COP1 upregulation
Schaftoside(SS), a bioactive compound derived from Herba Desmodii Styracifolii, has demonstrated anti-inflammatory properties in microglial cells; However, its role in ischemic brain injury in mice remains unclear. This study aimed to investigate the neuroprotective effects of schaftoside in a mouse model of middle cerebral artery occlusion (MCAO) and elucidate the underlying molecular mechanism. RNA sequencing revealed that schaftoside significantly upregulated the long noncoding RNA Gm32496 (LncGm36), which was prominently downregulated in the ischemic penumbra of MCAO mice. Administration of schaftoside reduced the infarct size, alleviated brain edema, and improved neurological outcomes in MCAO mice through LncGm36 upregulation. Mechanistically, schaftoside-induced LncGm36 expression was accompanied by elevated levels of COP1, a key regulator involved in neuroinflammation. RNA pull-down assays confirmed a direct interaction between LncGm36 and COP1. Silencing of either LncGm36 or COP1 attenuated schaftoside-mediated anti-inflammatory microglial polarization and neuroprotection. Collectively, these results indicate that schaftoside confers neuroprotection against ischemic brain injury by promoting an anti-inflammatory phenotypic shift of microglia through the LncGm36/COP1 pathway, suggesting its potential as a therapeutic agent for ischemic stroke.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.