Shiwei Zhang;Wei Deng;Haikun Jia;Hongzhuo Liu;Junlong Gong;Qiuyu Peng;Baoyong Chi
{"title":"191.5 dBc/Hz频率的串并联谐振振荡器","authors":"Shiwei Zhang;Wei Deng;Haikun Jia;Hongzhuo Liu;Junlong Gong;Qiuyu Peng;Baoyong Chi","doi":"10.1109/LSSC.2025.3564312","DOIUrl":null,"url":null,"abstract":"To achieve robust ultra-low phase noise (PN) and a high figure of merit (FoM), this letter proposes a series-parallel-resonance oscillator topology based on the following ideas: 1) a low-impedance resonator that supports high power consumption and effective PN suppression within a compact layout and 2) impedance and gain boosting for PN-power tradeoff, sharper transition, and active noise reduction. Prototyped in 65-nm CMOS technology, the proposed X-band oscillator demonstrates a PN of −131.4 dBc/Hz at 1-MHz offset, a FoM of 191.5 dBc/Hz, and a FoMA (i.e., FoM with area) of 198.5 dBc/Hz at 10 GHz with quadrature output.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"141-144"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Series-Parallel-Resonance Oscillator With a 191.5 dBc/Hz FoM\",\"authors\":\"Shiwei Zhang;Wei Deng;Haikun Jia;Hongzhuo Liu;Junlong Gong;Qiuyu Peng;Baoyong Chi\",\"doi\":\"10.1109/LSSC.2025.3564312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve robust ultra-low phase noise (PN) and a high figure of merit (FoM), this letter proposes a series-parallel-resonance oscillator topology based on the following ideas: 1) a low-impedance resonator that supports high power consumption and effective PN suppression within a compact layout and 2) impedance and gain boosting for PN-power tradeoff, sharper transition, and active noise reduction. Prototyped in 65-nm CMOS technology, the proposed X-band oscillator demonstrates a PN of −131.4 dBc/Hz at 1-MHz offset, a FoM of 191.5 dBc/Hz, and a FoMA (i.e., FoM with area) of 198.5 dBc/Hz at 10 GHz with quadrature output.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"141-144\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10976987/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976987/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Series-Parallel-Resonance Oscillator With a 191.5 dBc/Hz FoM
To achieve robust ultra-low phase noise (PN) and a high figure of merit (FoM), this letter proposes a series-parallel-resonance oscillator topology based on the following ideas: 1) a low-impedance resonator that supports high power consumption and effective PN suppression within a compact layout and 2) impedance and gain boosting for PN-power tradeoff, sharper transition, and active noise reduction. Prototyped in 65-nm CMOS technology, the proposed X-band oscillator demonstrates a PN of −131.4 dBc/Hz at 1-MHz offset, a FoM of 191.5 dBc/Hz, and a FoMA (i.e., FoM with area) of 198.5 dBc/Hz at 10 GHz with quadrature output.