{"title":"基于GCN和gat的可解释知识跟踪模型","authors":"Yujia Huo, Menghong He, Xue Tan, Kesha Chen","doi":"10.1007/s40747-025-01921-w","DOIUrl":null,"url":null,"abstract":"<p>Knowledge tracing (KT) aims to predict students’ future performance by assessing their level of knowledge mastery from past problem-solving records. However, many existing methods fail to take full advantage of the potential relationship between questions and skills, or fail to effectively utilize students’ historical learning data, which makes it difficult to accurately capture individualized mastery for each question. In addition, redundancy in long sequential information often leads to model overfitting, and existing deep knowledge tracing models have significant limitations in terms of the interpretability of their predictions. To address these issues, we propose GCAKT, an interpretable KT model focuses on student problem mastery. GCAKT generates personalized problem representations by modeling students’ historical learning information at a fine-grained level, and learns these representations jointly through a problem-skill embedding module and a personalized problem mastery module. To cope with the redundancy generated by long sequences, GCAKT employs an attention-based knowledge evolution module that constructs a final hidden knowledge state by analyzing the attention relationship between the student’s hidden knowledge state and the problem at each point in time. Meanwhile, GCAKT utilizes the attention weights to construct interpretable paths, aiding to provide interpretable prediction results. Experimental results on three publicly available real-world educational datasets show that GCAKT outperforms traditional methods in terms of both prediction accuracy and interpretability.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"150 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GCN and GAT-based interpretable knowledge tracing model\",\"authors\":\"Yujia Huo, Menghong He, Xue Tan, Kesha Chen\",\"doi\":\"10.1007/s40747-025-01921-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Knowledge tracing (KT) aims to predict students’ future performance by assessing their level of knowledge mastery from past problem-solving records. However, many existing methods fail to take full advantage of the potential relationship between questions and skills, or fail to effectively utilize students’ historical learning data, which makes it difficult to accurately capture individualized mastery for each question. In addition, redundancy in long sequential information often leads to model overfitting, and existing deep knowledge tracing models have significant limitations in terms of the interpretability of their predictions. To address these issues, we propose GCAKT, an interpretable KT model focuses on student problem mastery. GCAKT generates personalized problem representations by modeling students’ historical learning information at a fine-grained level, and learns these representations jointly through a problem-skill embedding module and a personalized problem mastery module. To cope with the redundancy generated by long sequences, GCAKT employs an attention-based knowledge evolution module that constructs a final hidden knowledge state by analyzing the attention relationship between the student’s hidden knowledge state and the problem at each point in time. Meanwhile, GCAKT utilizes the attention weights to construct interpretable paths, aiding to provide interpretable prediction results. Experimental results on three publicly available real-world educational datasets show that GCAKT outperforms traditional methods in terms of both prediction accuracy and interpretability.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-025-01921-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01921-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GCN and GAT-based interpretable knowledge tracing model
Knowledge tracing (KT) aims to predict students’ future performance by assessing their level of knowledge mastery from past problem-solving records. However, many existing methods fail to take full advantage of the potential relationship between questions and skills, or fail to effectively utilize students’ historical learning data, which makes it difficult to accurately capture individualized mastery for each question. In addition, redundancy in long sequential information often leads to model overfitting, and existing deep knowledge tracing models have significant limitations in terms of the interpretability of their predictions. To address these issues, we propose GCAKT, an interpretable KT model focuses on student problem mastery. GCAKT generates personalized problem representations by modeling students’ historical learning information at a fine-grained level, and learns these representations jointly through a problem-skill embedding module and a personalized problem mastery module. To cope with the redundancy generated by long sequences, GCAKT employs an attention-based knowledge evolution module that constructs a final hidden knowledge state by analyzing the attention relationship between the student’s hidden knowledge state and the problem at each point in time. Meanwhile, GCAKT utilizes the attention weights to construct interpretable paths, aiding to provide interpretable prediction results. Experimental results on three publicly available real-world educational datasets show that GCAKT outperforms traditional methods in terms of both prediction accuracy and interpretability.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.