{"title":"基于高效防污细胞膜水凝胶的电化学发光生物传感器用于直接检测人血清和细胞裂解液中的碱性磷酸酶。","authors":"Qiongwei Wu,Zhengjun Dong,Fan Geng,Jia Wang,Xianzhen Song,Caifeng Ding","doi":"10.1021/acs.analchem.5c00432","DOIUrl":null,"url":null,"abstract":"Electrochemiluminescence (ECL) biosensors are an ideal choice for the real-time and sensitive detection of biomarkers. However, there are many interfering biomolecules in human serum or cell lysate that can affect the ECL signal through nonspecific interface adsorption. To solve this issue, an efficient ECL antifouling biosensor based on a red blood cell membrane (RBCM) hydrogel was developed for the direct detection of alkaline phosphatase (ALP) in human serum and cell lysate. Among them, the RBCM hydrogel was prepared by embedding the purified RBCM vesicles into [1,2-distearoyl-sn-glycerol-3-phosphoethanolamine]-[polyethylene]-[acrylamide] (DSPE-PEG-AM), which endowed the antifouling interface with high stability and biocompatibility. Meanwhile, compared to RBCM, the constructed RBCM hydrogel improved the electron transfer rate of the antifouling interface. Furthermore, luminescent copper nanosheets (Cu NSs) and quencher MnO2 NSs were encapsulated in the RBCM hydrogel, which greatly reduced the distance between Cu NSs and MnO2 NSs, thereby effectively improving the signal quenching efficiency. In the presence of ALP, l-ascorbic acid 2-phosphate trisodium salt was hydrolyzed to ascorbic acid, thus disrupting the structure of MnO2 NSs to restore the ECL signal. Based on the above sensing strategies, the constructed ECL biosensor achieved an ultrasensitive detection of ALP with a wide linear range (10-5 to 104 U·L-1) and a detection limit as low as 3.4 × 10-6 U·L-1 (3δ/k), demonstrating potential application value in clinical diagnosis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemiluminescence Biosensor Based on an Efficient Antifouling Cell Membrane Hydrogel for the Direct Detection of Alkaline Phosphatase in Human Serum and Cell Lysate.\",\"authors\":\"Qiongwei Wu,Zhengjun Dong,Fan Geng,Jia Wang,Xianzhen Song,Caifeng Ding\",\"doi\":\"10.1021/acs.analchem.5c00432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemiluminescence (ECL) biosensors are an ideal choice for the real-time and sensitive detection of biomarkers. However, there are many interfering biomolecules in human serum or cell lysate that can affect the ECL signal through nonspecific interface adsorption. To solve this issue, an efficient ECL antifouling biosensor based on a red blood cell membrane (RBCM) hydrogel was developed for the direct detection of alkaline phosphatase (ALP) in human serum and cell lysate. Among them, the RBCM hydrogel was prepared by embedding the purified RBCM vesicles into [1,2-distearoyl-sn-glycerol-3-phosphoethanolamine]-[polyethylene]-[acrylamide] (DSPE-PEG-AM), which endowed the antifouling interface with high stability and biocompatibility. Meanwhile, compared to RBCM, the constructed RBCM hydrogel improved the electron transfer rate of the antifouling interface. Furthermore, luminescent copper nanosheets (Cu NSs) and quencher MnO2 NSs were encapsulated in the RBCM hydrogel, which greatly reduced the distance between Cu NSs and MnO2 NSs, thereby effectively improving the signal quenching efficiency. In the presence of ALP, l-ascorbic acid 2-phosphate trisodium salt was hydrolyzed to ascorbic acid, thus disrupting the structure of MnO2 NSs to restore the ECL signal. Based on the above sensing strategies, the constructed ECL biosensor achieved an ultrasensitive detection of ALP with a wide linear range (10-5 to 104 U·L-1) and a detection limit as low as 3.4 × 10-6 U·L-1 (3δ/k), demonstrating potential application value in clinical diagnosis.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c00432\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemiluminescence Biosensor Based on an Efficient Antifouling Cell Membrane Hydrogel for the Direct Detection of Alkaline Phosphatase in Human Serum and Cell Lysate.
Electrochemiluminescence (ECL) biosensors are an ideal choice for the real-time and sensitive detection of biomarkers. However, there are many interfering biomolecules in human serum or cell lysate that can affect the ECL signal through nonspecific interface adsorption. To solve this issue, an efficient ECL antifouling biosensor based on a red blood cell membrane (RBCM) hydrogel was developed for the direct detection of alkaline phosphatase (ALP) in human serum and cell lysate. Among them, the RBCM hydrogel was prepared by embedding the purified RBCM vesicles into [1,2-distearoyl-sn-glycerol-3-phosphoethanolamine]-[polyethylene]-[acrylamide] (DSPE-PEG-AM), which endowed the antifouling interface with high stability and biocompatibility. Meanwhile, compared to RBCM, the constructed RBCM hydrogel improved the electron transfer rate of the antifouling interface. Furthermore, luminescent copper nanosheets (Cu NSs) and quencher MnO2 NSs were encapsulated in the RBCM hydrogel, which greatly reduced the distance between Cu NSs and MnO2 NSs, thereby effectively improving the signal quenching efficiency. In the presence of ALP, l-ascorbic acid 2-phosphate trisodium salt was hydrolyzed to ascorbic acid, thus disrupting the structure of MnO2 NSs to restore the ECL signal. Based on the above sensing strategies, the constructed ECL biosensor achieved an ultrasensitive detection of ALP with a wide linear range (10-5 to 104 U·L-1) and a detection limit as low as 3.4 × 10-6 U·L-1 (3δ/k), demonstrating potential application value in clinical diagnosis.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.