Yanfang Zhang,Mingyan Chen,Ruiyan Niu,Dongguang Guo,Zilong Sun
{"title":"通过ROS-NF-κB-NLRP3信号轴研究T-2毒素诱导胸腺上皮细胞损伤和免疫毒性的机制","authors":"Yanfang Zhang,Mingyan Chen,Ruiyan Niu,Dongguang Guo,Zilong Sun","doi":"10.1021/acs.jafc.5c00355","DOIUrl":null,"url":null,"abstract":"Thymic epithelial cells (TECs) are critical for thymic structure and function, yet the impact of T-2 toxin (T-2) on TECs and related molecular pathways remains unclear. This study sheds light on the mechanisms of T-2-induced TEC damage, focusing on the ROS-NF-κB-NLRP3 signaling axis. The in vivo and in vitro analyses suggest that T-2 induces TEC injury through ROS-driven NLRP3 inflammasome activation, NF-κB signaling, inflammation, and apoptosis. Molecular docking analysis verified the binding of T-2 to critical components involved in oxidative stress, inflammatory signaling pathways, and apoptosis. These findings were further supported by therapeutic interventions targeting ROS and NLRP3. N-acetylcysteine (NAC) effectively reduced ROS levels, suppressed NF-κB signaling, inhibited NLRP3 activation, and mitigated inflammation and apoptosis, effects mirrored by the NLRP3 inhibitor MCC950, emphasizing the critical role of ROS-mediated NLRP3 inflammasome activation through NF-κB signaling in T-2-induced TEC damage. Concurrently, inhibition of the NF-κB signaling further suppressed ROS levels, NLRP3 inflammasome activation, and apoptosis in MTEC1 cells, emphasizing the pivotal function of the ROS-NF-κB-NLRP3 axis in the pathogenesis of T-2-induced thymic injury. Our study offers an in-depth insight into the mechanisms driving T-2-induced immunotoxicity and identifies potential therapeutic strategies targeting these pathways to mitigate thymic injury and preserve immune function.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"132 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into T-2 Toxin-Induced Thymic Epithelial Cell Injury and Immunotoxicity via the ROS-NF-κB-NLRP3 Signaling Axis.\",\"authors\":\"Yanfang Zhang,Mingyan Chen,Ruiyan Niu,Dongguang Guo,Zilong Sun\",\"doi\":\"10.1021/acs.jafc.5c00355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thymic epithelial cells (TECs) are critical for thymic structure and function, yet the impact of T-2 toxin (T-2) on TECs and related molecular pathways remains unclear. This study sheds light on the mechanisms of T-2-induced TEC damage, focusing on the ROS-NF-κB-NLRP3 signaling axis. The in vivo and in vitro analyses suggest that T-2 induces TEC injury through ROS-driven NLRP3 inflammasome activation, NF-κB signaling, inflammation, and apoptosis. Molecular docking analysis verified the binding of T-2 to critical components involved in oxidative stress, inflammatory signaling pathways, and apoptosis. These findings were further supported by therapeutic interventions targeting ROS and NLRP3. N-acetylcysteine (NAC) effectively reduced ROS levels, suppressed NF-κB signaling, inhibited NLRP3 activation, and mitigated inflammation and apoptosis, effects mirrored by the NLRP3 inhibitor MCC950, emphasizing the critical role of ROS-mediated NLRP3 inflammasome activation through NF-κB signaling in T-2-induced TEC damage. Concurrently, inhibition of the NF-κB signaling further suppressed ROS levels, NLRP3 inflammasome activation, and apoptosis in MTEC1 cells, emphasizing the pivotal function of the ROS-NF-κB-NLRP3 axis in the pathogenesis of T-2-induced thymic injury. Our study offers an in-depth insight into the mechanisms driving T-2-induced immunotoxicity and identifies potential therapeutic strategies targeting these pathways to mitigate thymic injury and preserve immune function.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.5c00355\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c00355","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanistic Insights into T-2 Toxin-Induced Thymic Epithelial Cell Injury and Immunotoxicity via the ROS-NF-κB-NLRP3 Signaling Axis.
Thymic epithelial cells (TECs) are critical for thymic structure and function, yet the impact of T-2 toxin (T-2) on TECs and related molecular pathways remains unclear. This study sheds light on the mechanisms of T-2-induced TEC damage, focusing on the ROS-NF-κB-NLRP3 signaling axis. The in vivo and in vitro analyses suggest that T-2 induces TEC injury through ROS-driven NLRP3 inflammasome activation, NF-κB signaling, inflammation, and apoptosis. Molecular docking analysis verified the binding of T-2 to critical components involved in oxidative stress, inflammatory signaling pathways, and apoptosis. These findings were further supported by therapeutic interventions targeting ROS and NLRP3. N-acetylcysteine (NAC) effectively reduced ROS levels, suppressed NF-κB signaling, inhibited NLRP3 activation, and mitigated inflammation and apoptosis, effects mirrored by the NLRP3 inhibitor MCC950, emphasizing the critical role of ROS-mediated NLRP3 inflammasome activation through NF-κB signaling in T-2-induced TEC damage. Concurrently, inhibition of the NF-κB signaling further suppressed ROS levels, NLRP3 inflammasome activation, and apoptosis in MTEC1 cells, emphasizing the pivotal function of the ROS-NF-κB-NLRP3 axis in the pathogenesis of T-2-induced thymic injury. Our study offers an in-depth insight into the mechanisms driving T-2-induced immunotoxicity and identifies potential therapeutic strategies targeting these pathways to mitigate thymic injury and preserve immune function.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.