骨科手术机器人辅助牵收系统的开发与验证

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Xiaolong Zhu;Yuzhen Jiang;Rui He;Changsheng Li;Xingguang Duan
{"title":"骨科手术机器人辅助牵收系统的开发与验证","authors":"Xiaolong Zhu;Yuzhen Jiang;Rui He;Changsheng Li;Xingguang Duan","doi":"10.1109/TMRB.2025.3550648","DOIUrl":null,"url":null,"abstract":"Tissue retraction, one of the basic steps in orthopedic surgery, is related to the smooth entry of surgical instruments into the surgical area and provides a clear surgical perspective for surgeons. This work introduces the first robot-assisted retraction system (RARS) specifically designed for orthopedic surgery. The RARS allows surgeons to set a safe retraction force and roughly set the posture of the retraction device at the beginning. To ensure that the RARS automatically completes the task in a safe manner, we propose a safety control framework that employs iterative enhanced control based on interaction model to handle the retraction interaction problem, and avoids interference with the operation of surgeons through null-space optimization. First, we performed a performance test of the RARS on a phantom model, and the results showed that the maximum tracking error of the retraction force was 0.51N, demonstrating satisfactory tracking performance. Second, we validated the effectiveness of null-space optimization by observing the evolution of joint positions. Finally, we conducted experiments on in-vivo animal and the results showed that the proposed RARS exhibited superior performance in safe retraction force tracking accuracy and tissue damage compared to traditional manual retractions.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"492-501"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Robot-Assisted Retraction System for Orthopedic Surgery\",\"authors\":\"Xiaolong Zhu;Yuzhen Jiang;Rui He;Changsheng Li;Xingguang Duan\",\"doi\":\"10.1109/TMRB.2025.3550648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue retraction, one of the basic steps in orthopedic surgery, is related to the smooth entry of surgical instruments into the surgical area and provides a clear surgical perspective for surgeons. This work introduces the first robot-assisted retraction system (RARS) specifically designed for orthopedic surgery. The RARS allows surgeons to set a safe retraction force and roughly set the posture of the retraction device at the beginning. To ensure that the RARS automatically completes the task in a safe manner, we propose a safety control framework that employs iterative enhanced control based on interaction model to handle the retraction interaction problem, and avoids interference with the operation of surgeons through null-space optimization. First, we performed a performance test of the RARS on a phantom model, and the results showed that the maximum tracking error of the retraction force was 0.51N, demonstrating satisfactory tracking performance. Second, we validated the effectiveness of null-space optimization by observing the evolution of joint positions. Finally, we conducted experiments on in-vivo animal and the results showed that the proposed RARS exhibited superior performance in safe retraction force tracking accuracy and tissue damage compared to traditional manual retractions.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 2\",\"pages\":\"492-501\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924290/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924290/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

组织回缩是骨科手术的基本步骤之一,它关系到手术器械能否顺利进入手术区域,为外科医生提供清晰的手术视角。这项工作介绍了第一个专门为骨科手术设计的机器人辅助牵伸系统(RARS)。RARS允许外科医生设定一个安全的牵开力,并在开始时大致设定牵开装置的姿势。为了保证RARS自动安全地完成任务,我们提出了一种安全控制框架,该框架采用基于交互模型的迭代增强控制来处理缩回交互问题,并通过零空间优化避免对外科医生手术的干扰。首先,我们在一个仿真模型上对RARS进行了性能测试,结果表明,RARS的最大回收力跟踪误差为0.51N,具有良好的跟踪性能。其次,通过观察关节位置的演变,验证了零空间优化的有效性。最后,我们在动物体内进行了实验,结果表明,与传统的手动牵开相比,所提出的RARS在安全牵开力跟踪准确性和组织损伤方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Validation of a Robot-Assisted Retraction System for Orthopedic Surgery
Tissue retraction, one of the basic steps in orthopedic surgery, is related to the smooth entry of surgical instruments into the surgical area and provides a clear surgical perspective for surgeons. This work introduces the first robot-assisted retraction system (RARS) specifically designed for orthopedic surgery. The RARS allows surgeons to set a safe retraction force and roughly set the posture of the retraction device at the beginning. To ensure that the RARS automatically completes the task in a safe manner, we propose a safety control framework that employs iterative enhanced control based on interaction model to handle the retraction interaction problem, and avoids interference with the operation of surgeons through null-space optimization. First, we performed a performance test of the RARS on a phantom model, and the results showed that the maximum tracking error of the retraction force was 0.51N, demonstrating satisfactory tracking performance. Second, we validated the effectiveness of null-space optimization by observing the evolution of joint positions. Finally, we conducted experiments on in-vivo animal and the results showed that the proposed RARS exhibited superior performance in safe retraction force tracking accuracy and tissue damage compared to traditional manual retractions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信