基于最小内约束力优化方法的解耦RCM后段眼显微手术机器人

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Zhi Li;Dunfa Long;Feiyang Chen;Kaifeng Wang;Chaoyang Shi
{"title":"基于最小内约束力优化方法的解耦RCM后段眼显微手术机器人","authors":"Zhi Li;Dunfa Long;Feiyang Chen;Kaifeng Wang;Chaoyang Shi","doi":"10.1109/TMRB.2025.3550643","DOIUrl":null,"url":null,"abstract":"This paper presents a leader-follower robotic system featuring a novel 4-degree-of-freedom (4-DOF) Remote Center of Motion (RCM) mechanism, tailored to address the limitations associated with traditional posterior segment ocular microsurgery. The proposed 4-DOF mechanism employs parallelogram motion replication to relocate the bulky instrument insertion drive from the end-effector to the proximal linkage on the base, minimizing obstruction to the microscope’s field of view and the surgical environment. The mechanism’s orthogonal or coincident arranged degrees of freedom, paired with independent drive units, facilitate calibration and enhance control accuracy. A minimized internal constraint force optimization method was proposed to improve RCM point stability and tip positioning accuracy. The mechanism’s configuration and parameters were optimized through an analytical mechanics model, effectively reducing the constraint force on the internal components under the same external loads, thereby minimizing deformation and maintaining accuracy. To enhance robot compatibility, modular surgical instruments with a quick-change coupler were developed based on the analysis of traditional instruments’ characteristics. The prototype was built and kinematically calibrated to reduce manufacturing and assembly errors and thus improve accuracy. Following kinematic calibration to minimize manufacturing and assembly errors, experimental validation revealed positioning accuracies of <inline-formula> <tex-math>$49~\\pm ~23~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$22~\\pm ~13~\\mu $ </tex-math></inline-formula>m, repeatabilities of <inline-formula> <tex-math>$25~\\pm ~10~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$9~\\pm ~4~\\mu $ </tex-math></inline-formula>m, and RCM deviations of <inline-formula> <tex-math>$13~\\pm ~10~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$18~\\pm ~11~\\mu $ </tex-math></inline-formula>m on the X-Z and Y-Z planes, respectively. The cannulation experiment further demonstrates the prototype’s potential for robot-assisted vitreoretinal microsurgery.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 2","pages":"528-541"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posterior Segment Ocular Microsurgical Robot With a Decoupling RCM Mechanism Based on a Minimized Internal Constraint Force Optimization Method\",\"authors\":\"Zhi Li;Dunfa Long;Feiyang Chen;Kaifeng Wang;Chaoyang Shi\",\"doi\":\"10.1109/TMRB.2025.3550643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a leader-follower robotic system featuring a novel 4-degree-of-freedom (4-DOF) Remote Center of Motion (RCM) mechanism, tailored to address the limitations associated with traditional posterior segment ocular microsurgery. The proposed 4-DOF mechanism employs parallelogram motion replication to relocate the bulky instrument insertion drive from the end-effector to the proximal linkage on the base, minimizing obstruction to the microscope’s field of view and the surgical environment. The mechanism’s orthogonal or coincident arranged degrees of freedom, paired with independent drive units, facilitate calibration and enhance control accuracy. A minimized internal constraint force optimization method was proposed to improve RCM point stability and tip positioning accuracy. The mechanism’s configuration and parameters were optimized through an analytical mechanics model, effectively reducing the constraint force on the internal components under the same external loads, thereby minimizing deformation and maintaining accuracy. To enhance robot compatibility, modular surgical instruments with a quick-change coupler were developed based on the analysis of traditional instruments’ characteristics. The prototype was built and kinematically calibrated to reduce manufacturing and assembly errors and thus improve accuracy. Following kinematic calibration to minimize manufacturing and assembly errors, experimental validation revealed positioning accuracies of <inline-formula> <tex-math>$49~\\\\pm ~23~\\\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$22~\\\\pm ~13~\\\\mu $ </tex-math></inline-formula>m, repeatabilities of <inline-formula> <tex-math>$25~\\\\pm ~10~\\\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$9~\\\\pm ~4~\\\\mu $ </tex-math></inline-formula>m, and RCM deviations of <inline-formula> <tex-math>$13~\\\\pm ~10~\\\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$18~\\\\pm ~11~\\\\mu $ </tex-math></inline-formula>m on the X-Z and Y-Z planes, respectively. The cannulation experiment further demonstrates the prototype’s potential for robot-assisted vitreoretinal microsurgery.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 2\",\"pages\":\"528-541\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924265/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924265/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有新颖的4自由度(4-DOF)远程运动中心(RCM)机构的领导-跟随机器人系统,旨在解决传统后段眼显微手术的局限性。所提出的四自由度机构采用平行四边形运动复制,将庞大的器械插入驱动器从末端执行器重新定位到基座上的近端连杆,最大限度地减少了对显微镜视野和手术环境的阻碍。该机构的正交或重合排列自由度,与独立的驱动单元配对,便于校准和提高控制精度。为了提高RCM点稳定性和定位精度,提出了一种最小化内约束优化方法。通过解析力学模型对机构的构型和参数进行优化,有效地减小了在相同外部载荷下对内部构件的约束,从而使变形最小化并保持精度。为了提高机器人的兼容性,在分析传统手术器械特点的基础上,开发了具有快速更换耦合器的模块化手术器械。为了减少制造和装配误差,从而提高精度,对原型进行了建造和运动学校准。通过运动学标定,最小化制造和装配误差,实验验证表明,定位精度分别为$49~\pm ~23~\ pm ~13~\mu $ m和$22~\pm ~13~\mu $ m,重复性分别为$25~\pm ~10~\mu $ m和$9~\pm ~4~\mu $ m, X-Z和Y-Z平面的RCM偏差分别为$13~\pm ~10~\mu $ m和$18~\pm ~11~\mu $ m。插管实验进一步证明了该原型在机器人辅助玻璃体视网膜显微手术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Posterior Segment Ocular Microsurgical Robot With a Decoupling RCM Mechanism Based on a Minimized Internal Constraint Force Optimization Method
This paper presents a leader-follower robotic system featuring a novel 4-degree-of-freedom (4-DOF) Remote Center of Motion (RCM) mechanism, tailored to address the limitations associated with traditional posterior segment ocular microsurgery. The proposed 4-DOF mechanism employs parallelogram motion replication to relocate the bulky instrument insertion drive from the end-effector to the proximal linkage on the base, minimizing obstruction to the microscope’s field of view and the surgical environment. The mechanism’s orthogonal or coincident arranged degrees of freedom, paired with independent drive units, facilitate calibration and enhance control accuracy. A minimized internal constraint force optimization method was proposed to improve RCM point stability and tip positioning accuracy. The mechanism’s configuration and parameters were optimized through an analytical mechanics model, effectively reducing the constraint force on the internal components under the same external loads, thereby minimizing deformation and maintaining accuracy. To enhance robot compatibility, modular surgical instruments with a quick-change coupler were developed based on the analysis of traditional instruments’ characteristics. The prototype was built and kinematically calibrated to reduce manufacturing and assembly errors and thus improve accuracy. Following kinematic calibration to minimize manufacturing and assembly errors, experimental validation revealed positioning accuracies of $49~\pm ~23~\mu $ m and $22~\pm ~13~\mu $ m, repeatabilities of $25~\pm ~10~\mu $ m and $9~\pm ~4~\mu $ m, and RCM deviations of $13~\pm ~10~\mu $ m and $18~\pm ~11~\mu $ m on the X-Z and Y-Z planes, respectively. The cannulation experiment further demonstrates the prototype’s potential for robot-assisted vitreoretinal microsurgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信