{"title":"山地生物群因范围移动而灭绝的证据有限","authors":"Yi-Hsiu Chen, Jonathan Lenoir, I-Ching Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Mountain biodiversity reorganizes rapidly as species shift upslope to track temperatures. Pervasive species redistribution poses substantial threats to mountain ecosystems, a phenomenon sometimes described as an “escalator to extinction,” primarily through mountaintop extinctions, range shift gaps (i.e., rapid shifts of suitable temperatures getting ahead of narrow-range species’ upper limits), and lowland biodiversity attrition, yet empirical evidence remains scarce. In this study, our analysis of 8800 records of historical and modern elevational range limits for 440 animal and 1629 plant species revealed little evidence supporting the proposed threats. Observed changes largely fell within random expectations, accounting for geometric constraints. Although delayed mountaintop extinctions point to accumulating extinction debt, concurrent range expansions of both narrow-range and lowland species suggest thermal niche underfilling, processes that collectively drive biotic homogenization across biologically complex mountain ecosystems.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6748","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limited evidence for range shift–driven extinction in mountain biota\",\"authors\":\"Yi-Hsiu Chen, Jonathan Lenoir, I-Ching Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Mountain biodiversity reorganizes rapidly as species shift upslope to track temperatures. Pervasive species redistribution poses substantial threats to mountain ecosystems, a phenomenon sometimes described as an “escalator to extinction,” primarily through mountaintop extinctions, range shift gaps (i.e., rapid shifts of suitable temperatures getting ahead of narrow-range species’ upper limits), and lowland biodiversity attrition, yet empirical evidence remains scarce. In this study, our analysis of 8800 records of historical and modern elevational range limits for 440 animal and 1629 plant species revealed little evidence supporting the proposed threats. Observed changes largely fell within random expectations, accounting for geometric constraints. Although delayed mountaintop extinctions point to accumulating extinction debt, concurrent range expansions of both narrow-range and lowland species suggest thermal niche underfilling, processes that collectively drive biotic homogenization across biologically complex mountain ecosystems.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"388 6748\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adq9512\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adq9512","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Limited evidence for range shift–driven extinction in mountain biota
Mountain biodiversity reorganizes rapidly as species shift upslope to track temperatures. Pervasive species redistribution poses substantial threats to mountain ecosystems, a phenomenon sometimes described as an “escalator to extinction,” primarily through mountaintop extinctions, range shift gaps (i.e., rapid shifts of suitable temperatures getting ahead of narrow-range species’ upper limits), and lowland biodiversity attrition, yet empirical evidence remains scarce. In this study, our analysis of 8800 records of historical and modern elevational range limits for 440 animal and 1629 plant species revealed little evidence supporting the proposed threats. Observed changes largely fell within random expectations, accounting for geometric constraints. Although delayed mountaintop extinctions point to accumulating extinction debt, concurrent range expansions of both narrow-range and lowland species suggest thermal niche underfilling, processes that collectively drive biotic homogenization across biologically complex mountain ecosystems.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.