利用紫紫衍生物的自供电多色智能窗的开发

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wanxiong Yong, Weining Liu, Xiaoying Xin and Guodong Fu
{"title":"利用紫紫衍生物的自供电多色智能窗的开发","authors":"Wanxiong Yong, Weining Liu, Xiaoying Xin and Guodong Fu","doi":"10.1039/D5TC00818B","DOIUrl":null,"url":null,"abstract":"<p >In recent years, smart windows that provide energy-efficient solutions for the construction and transportation sectors have attracted considerable interest as a result of increasingly severe environmental issues. Electrochromic windows have emerged as a prominent option because of their high coloring efficiency and broad optical modulation range. However, traditional electrochromic devices necessitate the use of an external electric field to operate, which not only increases energy consumption but also poses safety risks. In this study, we propose a novel self-powered electrochromic smart window that utilizes the principles of self-charging batteries to achieve optical modulation across a wide spectrum of visible light. This device utilizes viologen derivatives as electrochromic materials due to their highly reversible redox reactions and the ease with which their colors can be manipulated. The devices can exhibit three distinct display states, transitioning from colorless or pale yellow to blue, purple, and green, by varying the types of viologen derivative electrochromic materials employed. Notably, simply disconnecting the zinc anode from the conductive glass cathode enables the self-recovery of the electrochromic state, thereby restoring the initial transmittance level. This recovery takes place as the viologen cation radical spontaneously oxidizes to form the divalent ion; a process facilitated by oxygen dissolved within the gel electrolyte. The device not only features a multicolor display and efficient optical modulation but also demonstrates excellent cycle stability and safety. Consequently, the smart window presented functions as a multifunctional device, serving both as an electrochromic window and an energy storage unit. This innovative self-powered multicolor display device significantly broadens the application scope of electrochromic smart windows. It achieves not only the shading effect of optical modulation but also meets the energy-saving and flexible design needs in the fields of architecture and transportation, thereby providing opportunities for further applications in the new energy industry.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 19","pages":" 9474-9482"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of self-powered multicolored smart windows utilizing viologen derivatives†\",\"authors\":\"Wanxiong Yong, Weining Liu, Xiaoying Xin and Guodong Fu\",\"doi\":\"10.1039/D5TC00818B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, smart windows that provide energy-efficient solutions for the construction and transportation sectors have attracted considerable interest as a result of increasingly severe environmental issues. Electrochromic windows have emerged as a prominent option because of their high coloring efficiency and broad optical modulation range. However, traditional electrochromic devices necessitate the use of an external electric field to operate, which not only increases energy consumption but also poses safety risks. In this study, we propose a novel self-powered electrochromic smart window that utilizes the principles of self-charging batteries to achieve optical modulation across a wide spectrum of visible light. This device utilizes viologen derivatives as electrochromic materials due to their highly reversible redox reactions and the ease with which their colors can be manipulated. The devices can exhibit three distinct display states, transitioning from colorless or pale yellow to blue, purple, and green, by varying the types of viologen derivative electrochromic materials employed. Notably, simply disconnecting the zinc anode from the conductive glass cathode enables the self-recovery of the electrochromic state, thereby restoring the initial transmittance level. This recovery takes place as the viologen cation radical spontaneously oxidizes to form the divalent ion; a process facilitated by oxygen dissolved within the gel electrolyte. The device not only features a multicolor display and efficient optical modulation but also demonstrates excellent cycle stability and safety. Consequently, the smart window presented functions as a multifunctional device, serving both as an electrochromic window and an energy storage unit. This innovative self-powered multicolor display device significantly broadens the application scope of electrochromic smart windows. It achieves not only the shading effect of optical modulation but also meets the energy-saving and flexible design needs in the fields of architecture and transportation, thereby providing opportunities for further applications in the new energy industry.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 19\",\"pages\":\" 9474-9482\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00818b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00818b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于日益严重的环境问题,为建筑和交通部门提供节能解决方案的智能窗户引起了人们的极大兴趣。电致变色窗口由于其高着色效率和宽光学调制范围而成为一个突出的选择。然而,传统的电致变色器件需要使用外部电场来操作,这不仅增加了能源消耗,而且存在安全风险。在这项研究中,我们提出了一种新型的自供电电致变色智能窗口,它利用自充电电池的原理实现了宽光谱可见光的光调制。该装置利用紫外光衍生物作为电致变色材料,因为它们具有高度可逆的氧化还原反应,并且易于操纵它们的颜色。该器件可以表现出三种不同的显示状态,从无色或淡黄色过渡到蓝色、紫色和绿色,通过改变所使用的紫衍生电致变色材料的类型。值得注意的是,简单地将锌阳极与导电玻璃阴极断开,可以使电致变色状态自我恢复,从而恢复初始透射率水平。当紫正离子自由基自发氧化形成二价离子时,这种恢复发生;由溶解在凝胶电解质中的氧促进的过程。该器件不仅具有多色显示和高效的光调制,而且具有出色的周期稳定性和安全性。因此,该智能窗口作为一种多功能装置,既可以作为电致变色窗口,又可以作为能量存储单元。这一创新的自供电多色显示器件大大拓宽了电致变色智能窗的应用范围。它既达到了光调制的遮阳效果,又满足了建筑、交通等领域节能、灵活的设计需求,从而为在新能源行业的进一步应用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of self-powered multicolored smart windows utilizing viologen derivatives†

In recent years, smart windows that provide energy-efficient solutions for the construction and transportation sectors have attracted considerable interest as a result of increasingly severe environmental issues. Electrochromic windows have emerged as a prominent option because of their high coloring efficiency and broad optical modulation range. However, traditional electrochromic devices necessitate the use of an external electric field to operate, which not only increases energy consumption but also poses safety risks. In this study, we propose a novel self-powered electrochromic smart window that utilizes the principles of self-charging batteries to achieve optical modulation across a wide spectrum of visible light. This device utilizes viologen derivatives as electrochromic materials due to their highly reversible redox reactions and the ease with which their colors can be manipulated. The devices can exhibit three distinct display states, transitioning from colorless or pale yellow to blue, purple, and green, by varying the types of viologen derivative electrochromic materials employed. Notably, simply disconnecting the zinc anode from the conductive glass cathode enables the self-recovery of the electrochromic state, thereby restoring the initial transmittance level. This recovery takes place as the viologen cation radical spontaneously oxidizes to form the divalent ion; a process facilitated by oxygen dissolved within the gel electrolyte. The device not only features a multicolor display and efficient optical modulation but also demonstrates excellent cycle stability and safety. Consequently, the smart window presented functions as a multifunctional device, serving both as an electrochromic window and an energy storage unit. This innovative self-powered multicolor display device significantly broadens the application scope of electrochromic smart windows. It achieves not only the shading effect of optical modulation but also meets the energy-saving and flexible design needs in the fields of architecture and transportation, thereby providing opportunities for further applications in the new energy industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信