{"title":"极化增强e型GaN p-FET及互补逻辑(CL)电路的设计与开发","authors":"Teng Li;Jingjing Yu;Sihang Liu;Yunhong Lao;Jiawei Cui;Hengyuan Qi;Junjie Yang;Han Yang;Xuelin Yang;Maojun Wang;Yamin Zhang;Shiwei Feng;Bo Shen;Meng Zhang;Jin Wei","doi":"10.1109/TED.2025.3556047","DOIUrl":null,"url":null,"abstract":"The low ionization rate of Mg acceptors in the p-gallium nitride (GaN) layer is a critical factor accounting for the low current density of E-mode GaN p-FETs. In this work, polarization-enhanced technology was adopted to enhance the ionization rate of the p-GaN channel. High-performance recessed-gate E-mode GaN p-FETs were fabricated to enable GaN complementary logic (CL) circuits. During fabrication, the channel thickness (<inline-formula> <tex-math>${t}_{x}$ </tex-math></inline-formula>) is found to be a critical parameter that influences the device metrics. With a decrease in <inline-formula> <tex-math>${t}_{x}$ </tex-math></inline-formula> (i.e., larger recess depth), a more negative threshold voltage (<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>) is achieved; however, the trade-off is an increase in <inline-formula> <tex-math>${R}_{\\text {on}}$ </tex-math></inline-formula>. The E-mode GaN p-FET with <inline-formula> <tex-math>${t}_{x} =32$ </tex-math></inline-formula> nm exhibits a <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of −1.1 V, a high current density of 17.7 mA/mm, a high <inline-formula> <tex-math>${I}_{\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {off}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6.9\\times 10^{{7}}$ </tex-math></inline-formula>, and a low subthreshold swing (SS) of 93 mV/dec. Furthermore, an E-mode n-channel p-GaN gate high electron mobility transistor (HEMT) was fabricated on the same epi-wafer, exhibiting a <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> of 1.3 V and an <inline-formula> <tex-math>${R}_{\\text {on}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6~\\mathrm {\\Omega \\cdot }$ </tex-math></inline-formula>mm. Finally, a GaN CL inverter was fabricated and demonstrated under <inline-formula> <tex-math>${V}_{\\text {DD}} =6$ </tex-math></inline-formula> V. Rail-to-rail voltage swing and low static power consumption were both achieved. This work further validates the feasibility of GaN CL integrated circuits and power integrated circuits (PICs).","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2259-2264"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of Polarization-Enhanced E-Mode GaN p-FET and Complementary Logic (CL) Circuits\",\"authors\":\"Teng Li;Jingjing Yu;Sihang Liu;Yunhong Lao;Jiawei Cui;Hengyuan Qi;Junjie Yang;Han Yang;Xuelin Yang;Maojun Wang;Yamin Zhang;Shiwei Feng;Bo Shen;Meng Zhang;Jin Wei\",\"doi\":\"10.1109/TED.2025.3556047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low ionization rate of Mg acceptors in the p-gallium nitride (GaN) layer is a critical factor accounting for the low current density of E-mode GaN p-FETs. In this work, polarization-enhanced technology was adopted to enhance the ionization rate of the p-GaN channel. High-performance recessed-gate E-mode GaN p-FETs were fabricated to enable GaN complementary logic (CL) circuits. During fabrication, the channel thickness (<inline-formula> <tex-math>${t}_{x}$ </tex-math></inline-formula>) is found to be a critical parameter that influences the device metrics. With a decrease in <inline-formula> <tex-math>${t}_{x}$ </tex-math></inline-formula> (i.e., larger recess depth), a more negative threshold voltage (<inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula>) is achieved; however, the trade-off is an increase in <inline-formula> <tex-math>${R}_{\\\\text {on}}$ </tex-math></inline-formula>. The E-mode GaN p-FET with <inline-formula> <tex-math>${t}_{x} =32$ </tex-math></inline-formula> nm exhibits a <inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula> of −1.1 V, a high current density of 17.7 mA/mm, a high <inline-formula> <tex-math>${I}_{\\\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\\\text {off}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6.9\\\\times 10^{{7}}$ </tex-math></inline-formula>, and a low subthreshold swing (SS) of 93 mV/dec. Furthermore, an E-mode n-channel p-GaN gate high electron mobility transistor (HEMT) was fabricated on the same epi-wafer, exhibiting a <inline-formula> <tex-math>${V}_{\\\\text {th}}$ </tex-math></inline-formula> of 1.3 V and an <inline-formula> <tex-math>${R}_{\\\\text {on}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$6~\\\\mathrm {\\\\Omega \\\\cdot }$ </tex-math></inline-formula>mm. Finally, a GaN CL inverter was fabricated and demonstrated under <inline-formula> <tex-math>${V}_{\\\\text {DD}} =6$ </tex-math></inline-formula> V. Rail-to-rail voltage swing and low static power consumption were both achieved. This work further validates the feasibility of GaN CL integrated circuits and power integrated circuits (PICs).\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 5\",\"pages\":\"2259-2264\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960615/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960615/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Development of Polarization-Enhanced E-Mode GaN p-FET and Complementary Logic (CL) Circuits
The low ionization rate of Mg acceptors in the p-gallium nitride (GaN) layer is a critical factor accounting for the low current density of E-mode GaN p-FETs. In this work, polarization-enhanced technology was adopted to enhance the ionization rate of the p-GaN channel. High-performance recessed-gate E-mode GaN p-FETs were fabricated to enable GaN complementary logic (CL) circuits. During fabrication, the channel thickness (${t}_{x}$ ) is found to be a critical parameter that influences the device metrics. With a decrease in ${t}_{x}$ (i.e., larger recess depth), a more negative threshold voltage (${V}_{\text {th}}$ ) is achieved; however, the trade-off is an increase in ${R}_{\text {on}}$ . The E-mode GaN p-FET with ${t}_{x} =32$ nm exhibits a ${V}_{\text {th}}$ of −1.1 V, a high current density of 17.7 mA/mm, a high ${I}_{\text {on}}$ /${I}_{\text {off}}$ of $6.9\times 10^{{7}}$ , and a low subthreshold swing (SS) of 93 mV/dec. Furthermore, an E-mode n-channel p-GaN gate high electron mobility transistor (HEMT) was fabricated on the same epi-wafer, exhibiting a ${V}_{\text {th}}$ of 1.3 V and an ${R}_{\text {on}}$ of $6~\mathrm {\Omega \cdot }$ mm. Finally, a GaN CL inverter was fabricated and demonstrated under ${V}_{\text {DD}} =6$ V. Rail-to-rail voltage swing and low static power consumption were both achieved. This work further validates the feasibility of GaN CL integrated circuits and power integrated circuits (PICs).
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.