{"title":"基于互补功率门控注入锁频乘法器的低参考杂散低抖动d波段锁相环鉴相器","authors":"Jaeho Kim;Jooeun Bang;Seohee Jung;Myeongho Han;Jaehyouk Choi","doi":"10.1109/LSSC.2025.3564893","DOIUrl":null,"url":null,"abstract":"This letter presents a D-Band fundamental-sampling phase-locked loop (FS-PLL) featuring a complementary power-gating injection locking frequency-multiplier-based phase detector (CPG-ILFM PD). To reduce the level of the reference spur, the proposed CPG-ILFM PD employs two replica voltage-controlled oscillators (RVCOs) that are alternatively switched to detect the phase error of the main VCO. This approach mitigates the binary frequency shift keying (BFSK)-like modulation typically observed in conventional ILFM PDs. Additionally, the loop bandwidth of the PLL was extended, effectively suppressing the poor out-of-band phase noise (PN) of the D-Band main VCO and enhancing jitter performance. Fabricated in a 40-nm CMOS process, the proposed D-Band PLL achieved a reference spur of −51 dBc and an RMS jitter of 65.6 fs while consuming 59.5 mW of power. This results in a jitter FoM of −245.9 dB at 119.5 GHz.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"129-132"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Reference-Spur and Low-Jitter D-Band PLL With Complementary Power-Gating Injection-Locked Frequency-Multiplier-Based Phase Detector\",\"authors\":\"Jaeho Kim;Jooeun Bang;Seohee Jung;Myeongho Han;Jaehyouk Choi\",\"doi\":\"10.1109/LSSC.2025.3564893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a D-Band fundamental-sampling phase-locked loop (FS-PLL) featuring a complementary power-gating injection locking frequency-multiplier-based phase detector (CPG-ILFM PD). To reduce the level of the reference spur, the proposed CPG-ILFM PD employs two replica voltage-controlled oscillators (RVCOs) that are alternatively switched to detect the phase error of the main VCO. This approach mitigates the binary frequency shift keying (BFSK)-like modulation typically observed in conventional ILFM PDs. Additionally, the loop bandwidth of the PLL was extended, effectively suppressing the poor out-of-band phase noise (PN) of the D-Band main VCO and enhancing jitter performance. Fabricated in a 40-nm CMOS process, the proposed D-Band PLL achieved a reference spur of −51 dBc and an RMS jitter of 65.6 fs while consuming 59.5 mW of power. This results in a jitter FoM of −245.9 dB at 119.5 GHz.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"129-132\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10978016/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10978016/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Low-Reference-Spur and Low-Jitter D-Band PLL With Complementary Power-Gating Injection-Locked Frequency-Multiplier-Based Phase Detector
This letter presents a D-Band fundamental-sampling phase-locked loop (FS-PLL) featuring a complementary power-gating injection locking frequency-multiplier-based phase detector (CPG-ILFM PD). To reduce the level of the reference spur, the proposed CPG-ILFM PD employs two replica voltage-controlled oscillators (RVCOs) that are alternatively switched to detect the phase error of the main VCO. This approach mitigates the binary frequency shift keying (BFSK)-like modulation typically observed in conventional ILFM PDs. Additionally, the loop bandwidth of the PLL was extended, effectively suppressing the poor out-of-band phase noise (PN) of the D-Band main VCO and enhancing jitter performance. Fabricated in a 40-nm CMOS process, the proposed D-Band PLL achieved a reference spur of −51 dBc and an RMS jitter of 65.6 fs while consuming 59.5 mW of power. This results in a jitter FoM of −245.9 dB at 119.5 GHz.