具有本地nand门和隔离方案的4F²1T1R RRAM的研究进展

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shengyu Bao;Zongwei Wang;Yuhang Yang;Qishen Wang;Linbo Shan;Lin Bao;Yimao Cai;Ru Huang
{"title":"具有本地nand门和隔离方案的4F²1T1R RRAM的研究进展","authors":"Shengyu Bao;Zongwei Wang;Yuhang Yang;Qishen Wang;Linbo Shan;Lin Bao;Yimao Cai;Ru Huang","doi":"10.1109/TED.2025.3554165","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an innovative <sc>nand</small>-gate array structure that optimizes cell density through local series connection. By implementing a p-well isolation in combination with the substrate bias effect, we effectively mitigate the operating voltage constraints on series-connected cells. This design ensures symmetric read operations and maintains uniform read margins among cells in the <sc>nand</small>-gate array, achieving a record cell size of <inline-formula> <tex-math>$0.045~\\mu $ </tex-math></inline-formula> m2 at the 40-nm technology node. This design demonstrates robust reliability with an endurance of 100k cycles and a ten-year retention at 150 ° C. Moreover, the implementation of deep trench isolation (DTI) technology enables further density enhancements, with a projected cell area of <inline-formula> <tex-math>$0.0255~\\mu $ </tex-math></inline-formula> m2 at the 28-nm technology node. This approach offers significant advancements in resistive random access memory (RRAM) density, making it highly suitable for high-density memory and computing applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2327-2333"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Toward 4F² 1T1R RRAM With Local NAND-gate and Isolation Scheme\",\"authors\":\"Shengyu Bao;Zongwei Wang;Yuhang Yang;Qishen Wang;Linbo Shan;Lin Bao;Yimao Cai;Ru Huang\",\"doi\":\"10.1109/TED.2025.3554165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce an innovative <sc>nand</small>-gate array structure that optimizes cell density through local series connection. By implementing a p-well isolation in combination with the substrate bias effect, we effectively mitigate the operating voltage constraints on series-connected cells. This design ensures symmetric read operations and maintains uniform read margins among cells in the <sc>nand</small>-gate array, achieving a record cell size of <inline-formula> <tex-math>$0.045~\\\\mu $ </tex-math></inline-formula> m2 at the 40-nm technology node. This design demonstrates robust reliability with an endurance of 100k cycles and a ten-year retention at 150 ° C. Moreover, the implementation of deep trench isolation (DTI) technology enables further density enhancements, with a projected cell area of <inline-formula> <tex-math>$0.0255~\\\\mu $ </tex-math></inline-formula> m2 at the 28-nm technology node. This approach offers significant advancements in resistive random access memory (RRAM) density, making it highly suitable for high-density memory and computing applications.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 5\",\"pages\":\"2327-2333\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948340/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10948340/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了一种创新的与门阵列结构,该结构通过局部串联连接来优化单元密度。通过将p井隔离与衬底偏置效应相结合,我们有效地减轻了串联电池的工作电压约束。该设计确保了对称的读取操作,并在与门阵列的单元之间保持均匀的读距,在40纳米技术节点上实现了$0.045~\mu $ m2的记录单元尺寸。该设计具有强大的可靠性,具有100k循环的耐久性和在150°c下保持10年的稳定性。此外,实施深沟槽隔离(DTI)技术可以进一步增强密度,在28纳米技术节点上的投影单元面积为0.0255~\mu $ m2。这种方法在电阻随机存取存储器(RRAM)密度方面有了显著的进步,使其非常适合于高密度存储器和计算应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Toward 4F² 1T1R RRAM With Local NAND-gate and Isolation Scheme
In this work, we introduce an innovative nand-gate array structure that optimizes cell density through local series connection. By implementing a p-well isolation in combination with the substrate bias effect, we effectively mitigate the operating voltage constraints on series-connected cells. This design ensures symmetric read operations and maintains uniform read margins among cells in the nand-gate array, achieving a record cell size of $0.045~\mu $ m2 at the 40-nm technology node. This design demonstrates robust reliability with an endurance of 100k cycles and a ten-year retention at 150 ° C. Moreover, the implementation of deep trench isolation (DTI) technology enables further density enhancements, with a projected cell area of $0.0255~\mu $ m2 at the 28-nm technology node. This approach offers significant advancements in resistive random access memory (RRAM) density, making it highly suitable for high-density memory and computing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信