{"title":"具有高浓度n离子注入和活化退火温度的1.3 kv以上β-Ga₂O₃垂直UMOSFET","authors":"Zhili Zou;Xiaodong Zhang;Chunhong Zeng;Tiwei Chen;Gaofu Guo;Botong Li;Zhucheng Li;Yongjian Ma;Xuanze Zhou;Guangwei Xu;Shibing Long;Zhongming Zeng;Baoshun Zhang","doi":"10.1109/TED.2025.3549403","DOIUrl":null,"url":null,"abstract":"In this article, we investigated the electrical characteristics of the high-voltage <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-gallium oxide (Ga2O3) vertical U-shaped trench gate MOSFETs (UMOSFETs) based on a current blocking layer (CBL) under varying nitrogen ions implantation concentrations and activation annealing temperatures. When the nitrogen ions implantation concentration is <inline-formula> <tex-math>$4\\times 10^{{19}}$ </tex-math></inline-formula> cm−3 and the activation annealing temperature is 1200 °C, the fabricated device achieved the highest breakdown voltage (<inline-formula> <tex-math>${V} _{\\text {br}}$ </tex-math></inline-formula>) exceeding 1.3 kV without field plates, while obtaining an <sc>on</small>-resistance (<inline-formula> <tex-math>${R} _{\\text {on}}$ </tex-math></inline-formula>) of 132.35 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula> cm2. Additionally, at a nitrogen ions implantation concentration of <inline-formula> <tex-math>$2\\times 10^{{19}}$ </tex-math></inline-formula> cm−3 and an activation annealing temperature of 1100 °C, the device achieved a <inline-formula> <tex-math>${V} _{\\text {br}}$ </tex-math></inline-formula> of 985 V, R<inline-formula> <tex-math>$_{\\text {on}}$ </tex-math></inline-formula> of 24.37 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula> cm2, and a power figure-of-merit (PFOM) of 40 MW/cm2. Our findings indicate that the current blocking capability of the CBL and Vbr improved with the increase in nitrogen ions implantation concentration and activation annealing temperature, while an increase in device R<inline-formula> <tex-math>$_{\\text {ON}}$ </tex-math></inline-formula> was observed. Overall, this work demonstrates the potential for achieving high-performance <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>-Ga2O3 UMOSFETs with nitrogen ions implantation.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 5","pages":"2461-2466"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Over 1.3-kV β-Ga₂O₃ Vertical UMOSFET With High Concentration of N-Ion Implantation and Activation Annealing Temperature\",\"authors\":\"Zhili Zou;Xiaodong Zhang;Chunhong Zeng;Tiwei Chen;Gaofu Guo;Botong Li;Zhucheng Li;Yongjian Ma;Xuanze Zhou;Guangwei Xu;Shibing Long;Zhongming Zeng;Baoshun Zhang\",\"doi\":\"10.1109/TED.2025.3549403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigated the electrical characteristics of the high-voltage <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>-gallium oxide (Ga2O3) vertical U-shaped trench gate MOSFETs (UMOSFETs) based on a current blocking layer (CBL) under varying nitrogen ions implantation concentrations and activation annealing temperatures. When the nitrogen ions implantation concentration is <inline-formula> <tex-math>$4\\\\times 10^{{19}}$ </tex-math></inline-formula> cm−3 and the activation annealing temperature is 1200 °C, the fabricated device achieved the highest breakdown voltage (<inline-formula> <tex-math>${V} _{\\\\text {br}}$ </tex-math></inline-formula>) exceeding 1.3 kV without field plates, while obtaining an <sc>on</small>-resistance (<inline-formula> <tex-math>${R} _{\\\\text {on}}$ </tex-math></inline-formula>) of 132.35 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula> cm2. Additionally, at a nitrogen ions implantation concentration of <inline-formula> <tex-math>$2\\\\times 10^{{19}}$ </tex-math></inline-formula> cm−3 and an activation annealing temperature of 1100 °C, the device achieved a <inline-formula> <tex-math>${V} _{\\\\text {br}}$ </tex-math></inline-formula> of 985 V, R<inline-formula> <tex-math>$_{\\\\text {on}}$ </tex-math></inline-formula> of 24.37 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula> cm2, and a power figure-of-merit (PFOM) of 40 MW/cm2. Our findings indicate that the current blocking capability of the CBL and Vbr improved with the increase in nitrogen ions implantation concentration and activation annealing temperature, while an increase in device R<inline-formula> <tex-math>$_{\\\\text {ON}}$ </tex-math></inline-formula> was observed. Overall, this work demonstrates the potential for achieving high-performance <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>-Ga2O3 UMOSFETs with nitrogen ions implantation.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 5\",\"pages\":\"2461-2466\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10931776/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10931776/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Over 1.3-kV β-Ga₂O₃ Vertical UMOSFET With High Concentration of N-Ion Implantation and Activation Annealing Temperature
In this article, we investigated the electrical characteristics of the high-voltage $\beta $ -gallium oxide (Ga2O3) vertical U-shaped trench gate MOSFETs (UMOSFETs) based on a current blocking layer (CBL) under varying nitrogen ions implantation concentrations and activation annealing temperatures. When the nitrogen ions implantation concentration is $4\times 10^{{19}}$ cm−3 and the activation annealing temperature is 1200 °C, the fabricated device achieved the highest breakdown voltage (${V} _{\text {br}}$ ) exceeding 1.3 kV without field plates, while obtaining an on-resistance (${R} _{\text {on}}$ ) of 132.35 m$\Omega \cdot $ cm2. Additionally, at a nitrogen ions implantation concentration of $2\times 10^{{19}}$ cm−3 and an activation annealing temperature of 1100 °C, the device achieved a ${V} _{\text {br}}$ of 985 V, R$_{\text {on}}$ of 24.37 m$\Omega \cdot $ cm2, and a power figure-of-merit (PFOM) of 40 MW/cm2. Our findings indicate that the current blocking capability of the CBL and Vbr improved with the increase in nitrogen ions implantation concentration and activation annealing temperature, while an increase in device R$_{\text {ON}}$ was observed. Overall, this work demonstrates the potential for achieving high-performance $\beta $ -Ga2O3 UMOSFETs with nitrogen ions implantation.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.