机器学习预测18枣多酚对生物分子损伤的保护作用

IF 4.8 Q1 AGRICULTURE, MULTIDISCIPLINARY
Nashi K. Alqahtani , Tareq M. Alnemr , Rania Ismail , Hosam M. Habib
{"title":"机器学习预测18枣多酚对生物分子损伤的保护作用","authors":"Nashi K. Alqahtani ,&nbsp;Tareq M. Alnemr ,&nbsp;Rania Ismail ,&nbsp;Hosam M. Habib","doi":"10.1016/j.jafr.2025.102019","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the diverse antioxidant and enzyme-inhibiting properties of 18 date palm cultivars, correlating these bioactivities with polyphenol profiles using biochemical methods and machine learning (ML). Maktoomi exhibited the highest phenolic content (759.42 mg GAE/100g), while Fard showed strong ferric-reducing antioxidant power (FRAP) activity (2456.13 mmol/100g). Significant enzyme inhibition variation was observed, Jabri (8.69 % AChE inhibition), Shikat alkahlas (21.06 % α-amylase inhibition), and Barhe (51.39 % tyrosinase inhibition). Maghool provided the highest protein protection (95–100 % BSA). These bioactivity data were integrated into an extreme gradient boosting (XGBoost) ML model to connect chemical features with experimental outcomes. The model demonstrated high predictive capability (R<sup>2</sup> ∼ 0.9–0.95) for amylase, acetylcholine, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, but lower values (R<sup>2</sup> &lt; 0.9) for more complex assays involving DNA or superoxide systems, indicating data quality limitations. This highlights targeted method improvements. These findings demonstrate that certain date components offer higher specific bioactivity, and the ML approach validates these methods, revealing benefits and limitations. Date extracts possess therapeutic potential, and the combined approach of experimental testing and ML mapping provides a framework for multi-parameter analysis of complex biological systems. However, further <em>in-vivo</em> validation is needed.</div></div>","PeriodicalId":34393,"journal":{"name":"Journal of Agriculture and Food Research","volume":"22 ","pages":"Article 102019"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning prediction of 18 date palm polyphenol protection against biomolecular damage\",\"authors\":\"Nashi K. Alqahtani ,&nbsp;Tareq M. Alnemr ,&nbsp;Rania Ismail ,&nbsp;Hosam M. Habib\",\"doi\":\"10.1016/j.jafr.2025.102019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the diverse antioxidant and enzyme-inhibiting properties of 18 date palm cultivars, correlating these bioactivities with polyphenol profiles using biochemical methods and machine learning (ML). Maktoomi exhibited the highest phenolic content (759.42 mg GAE/100g), while Fard showed strong ferric-reducing antioxidant power (FRAP) activity (2456.13 mmol/100g). Significant enzyme inhibition variation was observed, Jabri (8.69 % AChE inhibition), Shikat alkahlas (21.06 % α-amylase inhibition), and Barhe (51.39 % tyrosinase inhibition). Maghool provided the highest protein protection (95–100 % BSA). These bioactivity data were integrated into an extreme gradient boosting (XGBoost) ML model to connect chemical features with experimental outcomes. The model demonstrated high predictive capability (R<sup>2</sup> ∼ 0.9–0.95) for amylase, acetylcholine, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, but lower values (R<sup>2</sup> &lt; 0.9) for more complex assays involving DNA or superoxide systems, indicating data quality limitations. This highlights targeted method improvements. These findings demonstrate that certain date components offer higher specific bioactivity, and the ML approach validates these methods, revealing benefits and limitations. Date extracts possess therapeutic potential, and the combined approach of experimental testing and ML mapping provides a framework for multi-parameter analysis of complex biological systems. However, further <em>in-vivo</em> validation is needed.</div></div>\",\"PeriodicalId\":34393,\"journal\":{\"name\":\"Journal of Agriculture and Food Research\",\"volume\":\"22 \",\"pages\":\"Article 102019\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture and Food Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666154325003904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture and Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666154325003904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了18个枣椰树品种不同的抗氧化和酶抑制特性,并利用生物化学方法和机器学习(ML)将这些生物活性与多酚谱相关联。其中,Maktoomi的酚类含量最高(759.42 mg GAE/100g), Fard的FRAP活性较强(2456.13 mmol/100g)。酶抑制差异显著,雅布里(8.69%乙酰胆碱酯酶抑制)、石革碱(21.06% α-淀粉酶抑制)、巴河碱(51.39%酪氨酸酶抑制)。maghol提供最高的蛋白质保护(95% - 100% BSA)。这些生物活性数据被整合到一个极端梯度增强(XGBoost) ML模型中,将化学特征与实验结果联系起来。该模型对淀粉酶、乙酰胆碱和2,2-二苯基-1-吡啶酰肼(DPPH)检测显示出较高的预测能力(R2 ~ 0.9-0.95),但预测值较低(R2 <;0.9)用于涉及DNA或超氧化物系统的更复杂的分析,表明数据质量限制。这突出了有针对性的方法改进。这些发现表明,某些枣成分具有更高的特异性生物活性,ML方法验证了这些方法,揭示了优点和局限性。枣提取物具有治疗潜力,实验测试和ML映射相结合的方法为复杂生物系统的多参数分析提供了一个框架。然而,还需要进一步的体内验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning prediction of 18 date palm polyphenol protection against biomolecular damage
This study investigated the diverse antioxidant and enzyme-inhibiting properties of 18 date palm cultivars, correlating these bioactivities with polyphenol profiles using biochemical methods and machine learning (ML). Maktoomi exhibited the highest phenolic content (759.42 mg GAE/100g), while Fard showed strong ferric-reducing antioxidant power (FRAP) activity (2456.13 mmol/100g). Significant enzyme inhibition variation was observed, Jabri (8.69 % AChE inhibition), Shikat alkahlas (21.06 % α-amylase inhibition), and Barhe (51.39 % tyrosinase inhibition). Maghool provided the highest protein protection (95–100 % BSA). These bioactivity data were integrated into an extreme gradient boosting (XGBoost) ML model to connect chemical features with experimental outcomes. The model demonstrated high predictive capability (R2 ∼ 0.9–0.95) for amylase, acetylcholine, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, but lower values (R2 < 0.9) for more complex assays involving DNA or superoxide systems, indicating data quality limitations. This highlights targeted method improvements. These findings demonstrate that certain date components offer higher specific bioactivity, and the ML approach validates these methods, revealing benefits and limitations. Date extracts possess therapeutic potential, and the combined approach of experimental testing and ML mapping provides a framework for multi-parameter analysis of complex biological systems. However, further in-vivo validation is needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
2.60%
发文量
193
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信