{"title":"用有向图的广义偏谱来确定有向图的新判据","authors":"Yiquan Chao , Wei Wang , Hao Zhang","doi":"10.1016/j.laa.2025.04.026","DOIUrl":null,"url":null,"abstract":"<div><div>Spectral characterization of graphs is an important topic in spectral graph theory which has been studied extensively by researchers in recent years. The study of oriented graphs, however, has received less attention so far. In Qiu et al. (2021) <span><span>[6]</span></span>, the authors gave an arithmetic criterion for an oriented graph to be determined by its <em>generalized skew spectrum</em> (DGSS for short). More precisely, let Σ be an <em>n</em>-vertex oriented graph with skew adjacency matrix <em>S</em> and <span><math><mi>W</mi><mo>(</mo><mi>Σ</mi><mo>)</mo><mo>=</mo><mo>[</mo><mi>e</mi><mo>,</mo><mi>S</mi><mi>e</mi><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>e</mi><mo>]</mo></math></span> be the <em>walk-matrix</em> of Σ, where <em>e</em> is the all-one vector. A theorem of Qiu et al. <span><span>[6]</span></span> shows that a self-converse oriented graph Σ is DGSS, provided that the Smith normal form of <span><math><mi>W</mi><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span> is <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>d</mi><mo>)</mo></math></span>, where <em>d</em> is an odd and square-free integer and the number of 1's appeared in the diagonal is precisely <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. In this paper, we show that the above square-freeness assumptions on <em>d</em> can actually be removed, which significantly improves upon the above theorem. Our new ingredient is a key intermediate result, which is of independent interest: for a self-converse oriented graphs Σ and an odd prime <em>p</em>, if the rank of <span><math><mi>W</mi><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span> is <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, then the kernel of <span><math><mi>W</mi><msup><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is <em>anisotropic</em>, i.e., <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>v</mi><mo>≠</mo><mn>0</mn></math></span> for any <span><math><mn>0</mn><mo>≠</mo><mi>v</mi><mo>∈</mo><mrow><mi>ker</mi></mrow><mspace></mspace><mi>W</mi><msup><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"720 ","pages":"Pages 339-349"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new criterion for oriented graphs to be determined by their generalized skew spectrum\",\"authors\":\"Yiquan Chao , Wei Wang , Hao Zhang\",\"doi\":\"10.1016/j.laa.2025.04.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spectral characterization of graphs is an important topic in spectral graph theory which has been studied extensively by researchers in recent years. The study of oriented graphs, however, has received less attention so far. In Qiu et al. (2021) <span><span>[6]</span></span>, the authors gave an arithmetic criterion for an oriented graph to be determined by its <em>generalized skew spectrum</em> (DGSS for short). More precisely, let Σ be an <em>n</em>-vertex oriented graph with skew adjacency matrix <em>S</em> and <span><math><mi>W</mi><mo>(</mo><mi>Σ</mi><mo>)</mo><mo>=</mo><mo>[</mo><mi>e</mi><mo>,</mo><mi>S</mi><mi>e</mi><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>e</mi><mo>]</mo></math></span> be the <em>walk-matrix</em> of Σ, where <em>e</em> is the all-one vector. A theorem of Qiu et al. <span><span>[6]</span></span> shows that a self-converse oriented graph Σ is DGSS, provided that the Smith normal form of <span><math><mi>W</mi><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span> is <span><math><mrow><mi>diag</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>d</mi><mo>)</mo></math></span>, where <em>d</em> is an odd and square-free integer and the number of 1's appeared in the diagonal is precisely <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. In this paper, we show that the above square-freeness assumptions on <em>d</em> can actually be removed, which significantly improves upon the above theorem. Our new ingredient is a key intermediate result, which is of independent interest: for a self-converse oriented graphs Σ and an odd prime <em>p</em>, if the rank of <span><math><mi>W</mi><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span> is <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, then the kernel of <span><math><mi>W</mi><msup><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is <em>anisotropic</em>, i.e., <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>v</mi><mo>≠</mo><mn>0</mn></math></span> for any <span><math><mn>0</mn><mo>≠</mo><mi>v</mi><mo>∈</mo><mrow><mi>ker</mi></mrow><mspace></mspace><mi>W</mi><msup><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow><mrow><mi>T</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"720 \",\"pages\":\"Pages 339-349\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952500182X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500182X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
图的谱表征是谱图理论中的一个重要课题,近年来得到了研究者们的广泛研究。然而,有向图的研究迄今为止受到的关注较少。在Qiu et al.(2021)[6]中,作者给出了一个由其广义偏谱(DGSS)确定的有向图的算术准则。更准确地说,设Σ为一个n顶点的图,斜邻接矩阵S, W(Σ)=[e,Se,…,Sn−1e]为Σ的游走矩阵,其中e为全一向量。Qiu et al.[6]的一个定理表明,如果W(Σ)的Smith范式是diag(1,…,1,2,…,2,2d),其中d是一个奇数且无平方的整数,并且在对角线上出现的1的个数恰好是≤≤n2²,则面向自逆的图Σ是DGSS。在本文中,我们证明了上述关于d的平方自由度假设实际上是可以去除的,这是对上述定理的显著改进。我们的新成分是一个关键的中间结果,它是一个独立的兴趣:对于一个自逆导向图Σ和一个奇素数p,如果W(Σ)的秩是n−1 / Fp,那么W(Σ)T / Fp的核是各向异性的,即对于任何0≠v∈kerW(Σ)T / Fp, vTv≠0。
A new criterion for oriented graphs to be determined by their generalized skew spectrum
Spectral characterization of graphs is an important topic in spectral graph theory which has been studied extensively by researchers in recent years. The study of oriented graphs, however, has received less attention so far. In Qiu et al. (2021) [6], the authors gave an arithmetic criterion for an oriented graph to be determined by its generalized skew spectrum (DGSS for short). More precisely, let Σ be an n-vertex oriented graph with skew adjacency matrix S and be the walk-matrix of Σ, where e is the all-one vector. A theorem of Qiu et al. [6] shows that a self-converse oriented graph Σ is DGSS, provided that the Smith normal form of is , where d is an odd and square-free integer and the number of 1's appeared in the diagonal is precisely . In this paper, we show that the above square-freeness assumptions on d can actually be removed, which significantly improves upon the above theorem. Our new ingredient is a key intermediate result, which is of independent interest: for a self-converse oriented graphs Σ and an odd prime p, if the rank of is over , then the kernel of over is anisotropic, i.e., for any over .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.