{"title":"基于微流体的高通量单细胞活性氧和T细胞衰竭分析","authors":"Ruotong Rao, Rui Cao, Wenjun Wang, Tao Li, Heng Zhou, Yin Zhao, Jiang Zhu, Yunhuang Yang, Rui Hu, Fuling Zhou, Ying Li","doi":"10.1021/acs.analchem.5c01485","DOIUrl":null,"url":null,"abstract":"Reactive oxygen species (ROS) play a significant role in cellular signaling and oxidative stress, with elevated levels often linked to T cell exhaustion in various pathological conditions, including cancer. However, the relationship between ROS and T cell exhaustion in acute myeloid leukemia (AML) remains unexplored. To address this, we developed a high-throughput single-cell platform─T cell exhaustion and reactive oxygen species analyzer (TEROSA). The system achieved a single-cell capture efficiency of up to 80% with a throughput of 2400 cells and enabled dynamic monitoring of triple molecules, including the intracellular mitochondrial superoxide, on-membrane T cell exhaustion marker PD-1, and secreted extracellular H<sub>2</sub>O<sub>2</sub>. Our study evaluated the device’s performance across multiple cell lines and demonstrated its capability to assess ROS production at the single-cell level. In particular, we analyzed T cells from AML patients and found significantly elevated ROS levels and increased PD-1 expression compared to healthy donors, suggesting a potential link between ROS and T cell exhaustion in AML. These findings highlight the utility of TEROSA in advancing our understanding of T cell behavior in leukemia and underscore its potential for broader applications in single-cell analysis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidics-Based High-Throughput Single-Cell Analysis of Reactive Oxygen Species and T Cell Exhaustion\",\"authors\":\"Ruotong Rao, Rui Cao, Wenjun Wang, Tao Li, Heng Zhou, Yin Zhao, Jiang Zhu, Yunhuang Yang, Rui Hu, Fuling Zhou, Ying Li\",\"doi\":\"10.1021/acs.analchem.5c01485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive oxygen species (ROS) play a significant role in cellular signaling and oxidative stress, with elevated levels often linked to T cell exhaustion in various pathological conditions, including cancer. However, the relationship between ROS and T cell exhaustion in acute myeloid leukemia (AML) remains unexplored. To address this, we developed a high-throughput single-cell platform─T cell exhaustion and reactive oxygen species analyzer (TEROSA). The system achieved a single-cell capture efficiency of up to 80% with a throughput of 2400 cells and enabled dynamic monitoring of triple molecules, including the intracellular mitochondrial superoxide, on-membrane T cell exhaustion marker PD-1, and secreted extracellular H<sub>2</sub>O<sub>2</sub>. Our study evaluated the device’s performance across multiple cell lines and demonstrated its capability to assess ROS production at the single-cell level. In particular, we analyzed T cells from AML patients and found significantly elevated ROS levels and increased PD-1 expression compared to healthy donors, suggesting a potential link between ROS and T cell exhaustion in AML. These findings highlight the utility of TEROSA in advancing our understanding of T cell behavior in leukemia and underscore its potential for broader applications in single-cell analysis.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c01485\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01485","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Microfluidics-Based High-Throughput Single-Cell Analysis of Reactive Oxygen Species and T Cell Exhaustion
Reactive oxygen species (ROS) play a significant role in cellular signaling and oxidative stress, with elevated levels often linked to T cell exhaustion in various pathological conditions, including cancer. However, the relationship between ROS and T cell exhaustion in acute myeloid leukemia (AML) remains unexplored. To address this, we developed a high-throughput single-cell platform─T cell exhaustion and reactive oxygen species analyzer (TEROSA). The system achieved a single-cell capture efficiency of up to 80% with a throughput of 2400 cells and enabled dynamic monitoring of triple molecules, including the intracellular mitochondrial superoxide, on-membrane T cell exhaustion marker PD-1, and secreted extracellular H2O2. Our study evaluated the device’s performance across multiple cell lines and demonstrated its capability to assess ROS production at the single-cell level. In particular, we analyzed T cells from AML patients and found significantly elevated ROS levels and increased PD-1 expression compared to healthy donors, suggesting a potential link between ROS and T cell exhaustion in AML. These findings highlight the utility of TEROSA in advancing our understanding of T cell behavior in leukemia and underscore its potential for broader applications in single-cell analysis.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.