Yifei Cheng, Bingxin Liu, Junyi Xin, Xiaobin Wu, Wenchao Li, Jinwei Shang, Jiajin Wu, Zhengdong Zhang, Bin Xu, Mulong Du, Gong Cheng, Meilin Wang
{"title":"单细胞和空间RNA测序鉴定早期和晚发性前列腺癌不同的微环境和进展特征。","authors":"Yifei Cheng, Bingxin Liu, Junyi Xin, Xiaobin Wu, Wenchao Li, Jinwei Shang, Jiajin Wu, Zhengdong Zhang, Bin Xu, Mulong Du, Gong Cheng, Meilin Wang","doi":"10.1038/s43587-025-00842-0","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical and pathological outcomes differ between early-onset (diagnosed in men ≤55 years of age) and late-onset prostate cancer, potentially attributed to the changes in hormone levels and immune activities associated with aging. Exploring the heterogeneity therein holds potential for developing age-specific precision interventions. Here, through single-cell and spatial transcriptomic analyses of prostate cancer tissues, we identified that an androgen response-related transcriptional meta-program (AR-MP) might underlie the age-related heterogeneity of tumor cells and microenvironment. APOE<sup>+</sup> tumor-associated macrophages infiltrated AR-MP-activated tumor cells in early-onset prostate cancer, potentially facilitating tumor progression and immunosuppression. By contrast, inflammatory cancer-associated fibroblasts in late-onset prostate cancer correlated with downregulation of AR-MP of tumor cells and increased epithelial-to-mesenchymal transition and pre-existing castration resistance, which may also be linked to smoking. This study provides potential insights for tailoring precision treatments by age groups, emphasizing interventions that include targeting AR and tumor-associated macrophages in young patients but anchoring epithelial-to-mesenchymal transition and inflammatory cancer-associated fibroblasts in old counterparts.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":"909-928"},"PeriodicalIF":17.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell and spatial RNA sequencing identify divergent microenvironments and progression signatures in early- versus late-onset prostate cancer.\",\"authors\":\"Yifei Cheng, Bingxin Liu, Junyi Xin, Xiaobin Wu, Wenchao Li, Jinwei Shang, Jiajin Wu, Zhengdong Zhang, Bin Xu, Mulong Du, Gong Cheng, Meilin Wang\",\"doi\":\"10.1038/s43587-025-00842-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical and pathological outcomes differ between early-onset (diagnosed in men ≤55 years of age) and late-onset prostate cancer, potentially attributed to the changes in hormone levels and immune activities associated with aging. Exploring the heterogeneity therein holds potential for developing age-specific precision interventions. Here, through single-cell and spatial transcriptomic analyses of prostate cancer tissues, we identified that an androgen response-related transcriptional meta-program (AR-MP) might underlie the age-related heterogeneity of tumor cells and microenvironment. APOE<sup>+</sup> tumor-associated macrophages infiltrated AR-MP-activated tumor cells in early-onset prostate cancer, potentially facilitating tumor progression and immunosuppression. By contrast, inflammatory cancer-associated fibroblasts in late-onset prostate cancer correlated with downregulation of AR-MP of tumor cells and increased epithelial-to-mesenchymal transition and pre-existing castration resistance, which may also be linked to smoking. This study provides potential insights for tailoring precision treatments by age groups, emphasizing interventions that include targeting AR and tumor-associated macrophages in young patients but anchoring epithelial-to-mesenchymal transition and inflammatory cancer-associated fibroblasts in old counterparts.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\" \",\"pages\":\"909-928\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-025-00842-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00842-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Single-cell and spatial RNA sequencing identify divergent microenvironments and progression signatures in early- versus late-onset prostate cancer.
The clinical and pathological outcomes differ between early-onset (diagnosed in men ≤55 years of age) and late-onset prostate cancer, potentially attributed to the changes in hormone levels and immune activities associated with aging. Exploring the heterogeneity therein holds potential for developing age-specific precision interventions. Here, through single-cell and spatial transcriptomic analyses of prostate cancer tissues, we identified that an androgen response-related transcriptional meta-program (AR-MP) might underlie the age-related heterogeneity of tumor cells and microenvironment. APOE+ tumor-associated macrophages infiltrated AR-MP-activated tumor cells in early-onset prostate cancer, potentially facilitating tumor progression and immunosuppression. By contrast, inflammatory cancer-associated fibroblasts in late-onset prostate cancer correlated with downregulation of AR-MP of tumor cells and increased epithelial-to-mesenchymal transition and pre-existing castration resistance, which may also be linked to smoking. This study provides potential insights for tailoring precision treatments by age groups, emphasizing interventions that include targeting AR and tumor-associated macrophages in young patients but anchoring epithelial-to-mesenchymal transition and inflammatory cancer-associated fibroblasts in old counterparts.