{"title":"揭示应变均匀性的挑战:设计和评估PDMS膜的精确力学生物学研究。","authors":"Nilüfer Düz, Yasin Gülsüm, Waleed Odeibat, Ismail Uyanık, Samet Akar, Pervin Dinçer","doi":"10.1080/10255842.2025.2495254","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanotransduction and mechanosensing enable cells to respond to mechanical stimuli, essential in various physiological functions. Specialized cell stretching devices use stretchable, transparent, and biocompatible elastomeric membranes to study these responses. However, achieving strain uniformity is a key challenge, affecting data accuracy and reliability. This study designed a polydimethylsiloxane (PDMS) membrane with optimized uniformity for electromechanical cell stretching. Finite element analysis optimized membrane size and shape, achieving a 90% strain uniformity index-a 233% improvement over commercial membranes. By tailoring material properties like cross-linker ratio and curing time, membrane failure issues were resolved, enhancing applications in tissue engineering and mechanobiology research.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-13"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the strain uniformity challenge: design and evaluation of a PDMS membrane for precise mechanobiology studies.\",\"authors\":\"Nilüfer Düz, Yasin Gülsüm, Waleed Odeibat, Ismail Uyanık, Samet Akar, Pervin Dinçer\",\"doi\":\"10.1080/10255842.2025.2495254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanotransduction and mechanosensing enable cells to respond to mechanical stimuli, essential in various physiological functions. Specialized cell stretching devices use stretchable, transparent, and biocompatible elastomeric membranes to study these responses. However, achieving strain uniformity is a key challenge, affecting data accuracy and reliability. This study designed a polydimethylsiloxane (PDMS) membrane with optimized uniformity for electromechanical cell stretching. Finite element analysis optimized membrane size and shape, achieving a 90% strain uniformity index-a 233% improvement over commercial membranes. By tailoring material properties like cross-linker ratio and curing time, membrane failure issues were resolved, enhancing applications in tissue engineering and mechanobiology research.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2495254\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2495254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Unveiling the strain uniformity challenge: design and evaluation of a PDMS membrane for precise mechanobiology studies.
Mechanotransduction and mechanosensing enable cells to respond to mechanical stimuli, essential in various physiological functions. Specialized cell stretching devices use stretchable, transparent, and biocompatible elastomeric membranes to study these responses. However, achieving strain uniformity is a key challenge, affecting data accuracy and reliability. This study designed a polydimethylsiloxane (PDMS) membrane with optimized uniformity for electromechanical cell stretching. Finite element analysis optimized membrane size and shape, achieving a 90% strain uniformity index-a 233% improvement over commercial membranes. By tailoring material properties like cross-linker ratio and curing time, membrane failure issues were resolved, enhancing applications in tissue engineering and mechanobiology research.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.