{"title":"基于高阶奇异值分解的补丁匹配扩散加权图像去噪新方法。","authors":"Liming Yang, Yuanjun Wang","doi":"10.1177/08953996241313321","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundDiffusion-weighted imaging (DWI) is an important technique to study brain microstructure. However, diffusion-weighted (DW) images suffer from severe low signal-to-noise ratio (SNR) problem, affecting subsequent diffusion analysis.ObjectiveThe goal of this paper is to develop advanced DWI denoising technique to effectively reduce noise while improving the accuracy and reliability of subsequent diffusion model fitting and diffusion analysis, thereby facilitating the research and analysis of brain science.MethodsWe propose a new method for denoising DW images based on patch-matching with higher-order singular value decomposition (HOSVD) by combined with the variance-stabilizing transformation technique. It starts with introducing a novel non-local mean algorithm as a prefiltering stage, and then denoises the noisy data using a local HOSVD algorithm based on the HOSVD bases learned from prefiltered images.ResultsExperiments are performed on simulation, HCP and in vivo brain DWI datasets. Results show that the proposed method significantly reduces spatially invariant and variant noise, improving the most reliable diffusion analysis compared with the different denoising methods.ConclusionsThe proposed method achieves state-of-the-art performance which can improve image quality and enable accurate diffusion analysis.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"33 3","pages":"526-539"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New method for diffusion-weighted images denoising based on patch-matching with higher-order singular value decomposition.\",\"authors\":\"Liming Yang, Yuanjun Wang\",\"doi\":\"10.1177/08953996241313321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundDiffusion-weighted imaging (DWI) is an important technique to study brain microstructure. However, diffusion-weighted (DW) images suffer from severe low signal-to-noise ratio (SNR) problem, affecting subsequent diffusion analysis.ObjectiveThe goal of this paper is to develop advanced DWI denoising technique to effectively reduce noise while improving the accuracy and reliability of subsequent diffusion model fitting and diffusion analysis, thereby facilitating the research and analysis of brain science.MethodsWe propose a new method for denoising DW images based on patch-matching with higher-order singular value decomposition (HOSVD) by combined with the variance-stabilizing transformation technique. It starts with introducing a novel non-local mean algorithm as a prefiltering stage, and then denoises the noisy data using a local HOSVD algorithm based on the HOSVD bases learned from prefiltered images.ResultsExperiments are performed on simulation, HCP and in vivo brain DWI datasets. Results show that the proposed method significantly reduces spatially invariant and variant noise, improving the most reliable diffusion analysis compared with the different denoising methods.ConclusionsThe proposed method achieves state-of-the-art performance which can improve image quality and enable accurate diffusion analysis.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\"33 3\",\"pages\":\"526-539\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241313321\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241313321","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
New method for diffusion-weighted images denoising based on patch-matching with higher-order singular value decomposition.
BackgroundDiffusion-weighted imaging (DWI) is an important technique to study brain microstructure. However, diffusion-weighted (DW) images suffer from severe low signal-to-noise ratio (SNR) problem, affecting subsequent diffusion analysis.ObjectiveThe goal of this paper is to develop advanced DWI denoising technique to effectively reduce noise while improving the accuracy and reliability of subsequent diffusion model fitting and diffusion analysis, thereby facilitating the research and analysis of brain science.MethodsWe propose a new method for denoising DW images based on patch-matching with higher-order singular value decomposition (HOSVD) by combined with the variance-stabilizing transformation technique. It starts with introducing a novel non-local mean algorithm as a prefiltering stage, and then denoises the noisy data using a local HOSVD algorithm based on the HOSVD bases learned from prefiltered images.ResultsExperiments are performed on simulation, HCP and in vivo brain DWI datasets. Results show that the proposed method significantly reduces spatially invariant and variant noise, improving the most reliable diffusion analysis compared with the different denoising methods.ConclusionsThe proposed method achieves state-of-the-art performance which can improve image quality and enable accurate diffusion analysis.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes