基于空间贝叶斯神经网络的心脏造影胎儿健康分类分析。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
P Solainayagi, G Sivagaminathan, Sabenabanu Abdulkadhar, A Gnana Soundari, K Krishnakumar
{"title":"基于空间贝叶斯神经网络的心脏造影胎儿健康分类分析。","authors":"P Solainayagi, G Sivagaminathan, Sabenabanu Abdulkadhar, A Gnana Soundari, K Krishnakumar","doi":"10.1080/10255842.2025.2478293","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnancy complications require early detection, but traditional Cardiotocography (CTG) analysis is labor-intensive and error-prone. This manuscript presents Cardiotocography Data Analysis for Foetal Health Classification using Spatial Bayesian Neural Network Optimized with Dwarf Mongoose Optimizer (CDA-FHC-SBNN-DMO). The process involves collecting CTG data, optimizing feature selection with Humboldt Squid Optimization Algorithm (HSOA) and classification using Spatial Bayesian Neural Network (SBNN) to categorize foetal health. Dwarf Mongoose Optimizer (DMO) is used to optimize SBNN. The CDA-FHC-SBNN-DMO method was implemented in Python, outperforms existing methods, achieving improvements of 20.89%, 31.45%, and 28.32% in accuracy, and significant increases in precision and recall.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-15"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiotocography data analysis for foetal health classification using Spatial Bayesian Neural Network Optimized with Dwarf Mongoose Optimizer.\",\"authors\":\"P Solainayagi, G Sivagaminathan, Sabenabanu Abdulkadhar, A Gnana Soundari, K Krishnakumar\",\"doi\":\"10.1080/10255842.2025.2478293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pregnancy complications require early detection, but traditional Cardiotocography (CTG) analysis is labor-intensive and error-prone. This manuscript presents Cardiotocography Data Analysis for Foetal Health Classification using Spatial Bayesian Neural Network Optimized with Dwarf Mongoose Optimizer (CDA-FHC-SBNN-DMO). The process involves collecting CTG data, optimizing feature selection with Humboldt Squid Optimization Algorithm (HSOA) and classification using Spatial Bayesian Neural Network (SBNN) to categorize foetal health. Dwarf Mongoose Optimizer (DMO) is used to optimize SBNN. The CDA-FHC-SBNN-DMO method was implemented in Python, outperforms existing methods, achieving improvements of 20.89%, 31.45%, and 28.32% in accuracy, and significant increases in precision and recall.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2478293\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2478293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

妊娠并发症需要早期发现,但传统的心脏造影(CTG)分析是劳动密集型的,容易出错。本文介绍了利用小猫鼬优化器优化的空间贝叶斯神经网络(cda - fhc - sbn - dmo)对胎儿健康分类的心脏造影数据分析。该过程包括收集CTG数据,使用洪堡鱿鱼优化算法(HSOA)优化特征选择,并使用空间贝叶斯神经网络(SBNN)对胎儿健康进行分类。使用侏儒猫鹅优化器(DMO)对SBNN进行优化。CDA-FHC-SBNN-DMO方法在Python中实现,优于现有方法,准确率提高了20.89%,31.45%和28.32%,精度和召回率显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiotocography data analysis for foetal health classification using Spatial Bayesian Neural Network Optimized with Dwarf Mongoose Optimizer.

Pregnancy complications require early detection, but traditional Cardiotocography (CTG) analysis is labor-intensive and error-prone. This manuscript presents Cardiotocography Data Analysis for Foetal Health Classification using Spatial Bayesian Neural Network Optimized with Dwarf Mongoose Optimizer (CDA-FHC-SBNN-DMO). The process involves collecting CTG data, optimizing feature selection with Humboldt Squid Optimization Algorithm (HSOA) and classification using Spatial Bayesian Neural Network (SBNN) to categorize foetal health. Dwarf Mongoose Optimizer (DMO) is used to optimize SBNN. The CDA-FHC-SBNN-DMO method was implemented in Python, outperforms existing methods, achieving improvements of 20.89%, 31.45%, and 28.32% in accuracy, and significant increases in precision and recall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信